PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Duke engineers make strides toward artificial cartilage

Composite material closest yet to properties of the real thing

2013-12-13
(Press-News.org) Contact information: Ken Kingery
ken.kingery@duke.edu
919-660-8414
Duke University
Duke engineers make strides toward artificial cartilage Composite material closest yet to properties of the real thing

DURHAM, N.C. -- A Duke research team has developed a better recipe for synthetic replacement cartilage in joints.

Combining two innovative technologies they each helped develop, lead authors Farshid Guilak, a professor of orthopedic surgery and biomedical engineering, and Xuanhe Zhao, assistant professor of mechanical engineering and materials science, found a way to create artificial replacement tissue that mimics both the strength and suppleness of native cartilage. Their results appear Dec. 17 in the journal Advanced Functional Materials.

Articular cartilage is the tissue on the ends of bones where they meet at joints in the body – including in the knees, shoulders and hips. It can erode over time or be damaged by injury or overuse, causing pain and lack of mobility. While replacing the tissue could bring relief to millions, replicating the properties of native cartilage -- which is strong and load-bearing, yet smooth and cushiony -- has proven a challenge.

In 2007 Guilak and his team developed a three-dimensional fabric "scaffold" into which stem cells could be injected and successfully "grown" into articular cartilage tissue. Constructed of minuscule woven fibers, each of the scaffold's seven layers is about as thick as a human hair. The finished product is about 1 millimeter thick.

Since then, the challenge has been to develop the right medium to fill the empty spaces of the scaffold -- one that can sustain compressive loads, provide a lubricating surface and potentially support the growth of stem cells on the scaffold. Materials supple enough to simulate native cartilage have been too squishy and fragile to grow in a joint and withstand loading. "Think Jell-O," says Guilak. Stronger substances, on the other hand, haven't been smooth and flexible enough.

That's where the partnership with Zhao comes in.

Zhao proposed a theory for the design of durable hydrogels (water-based polymer gels) and in 2012 collaborated with a team from Harvard University to develop an exceptionally strong yet pliable interpenetrating-network hydrogel.

"It's extremely tough, flexible and formable, yet highly lubricating," Zhao says. "It has all the mechanical properties of native cartilage and can withstand wear and tear without fracturing."

He and Guilak began working together to integrate the hydrogel into the fabric of the 3-D woven scaffolds in a process Zhao compares to pouring concrete over a steel framework.

In their experiments, the researchers compared the resulting composite material to other combinations of Guilak's scaffolding embedded with previously studied hydrogels. The tests showed that Zhao's invention was tougher than the competition with a lower coefficient of friction. And though the resulting material did not quite meet the standards of natural cartilage, it easily outperformed all other known potential artificial replacements across the board, including the hydrogel and scaffolding by themselves.

"From a mechanical standpoint, this technology remedies the issues that other types of synthetic cartilage have had," says Zhao, founder of Duke's Soft Active Materials (SAMs) Laboratory. "It's a very promising candidate for artificial cartilage in the future."

The team's next step will likely be to implant small patches of the synthetic cartilage in animal models, according to Guilak and Zhao.



INFORMATION:



Their work was supported in part by National Institutes of Health grants AG15768, AR50245, AR48182, AR48852, the Arthritis Foundation, the Collaborative Research Center, AO Foundation, Davos, Switzerland and the NSF (CMMI-1253495, CMMI-1200515, and DMR-1121107).

"Composite Three-Dimensional Woven Scaffolds with Interpenetrating Network Hydrogels to Create Functional Synthetic Articular Cartilage," Liao, I.-C., Moutos, F. T., Estes, B. T., Zhao, X. and Guilak, F. Adv. Funct. Mater., 2013. doi: 10.1002/adfm.201300483



ELSE PRESS RELEASES FROM THIS DATE:

Marine biologists unmask species diversity in coral reefs

2013-12-13
Marine biologists unmask species diversity in coral reefs Rising water temperatures due to climate change are putting coral reefs in jeopardy, but a surprising discovery by a team of marine biologists suggests that very similar looking coral species differ in how they survive ...

From friend to foe: How benign bacteria evolve to virulent pathogens

2013-12-13
From friend to foe: How benign bacteria evolve to virulent pathogens Bacteria can evolve rapidly to adapt to environmental change. When the "environment" is the immune response of an infected host, this evolution can turn harmless bacteria into life-threatening ...

Physical activity may slow kidney function decline in patients with kidney disease

2013-12-13
Physical activity may slow kidney function decline in patients with kidney disease 60 million people globally have chronic kidney disease. Washington, DC (December 12, 2013) — Increased physical activity may slow kidney function decline in patients with kidney disease, ...

Diet and physical activity may affect one's risk of developing kidney stones

2013-12-13
Diet and physical activity may affect one's risk of developing kidney stones Even small amounts of exercise provide benefits Washington, DC (December 12, 2013) — Even small amounts of physical activity may decrease the risk of developing kidney stones, according ...

Astronomers discover first noble gas molecules in space

2013-12-13
Astronomers discover first noble gas molecules in space Noble gas molecules have been detected in space for the first time in the Crab Nebula, a supernova remnant, by astronomers at UCL. Led by Professor Mike Barlow (UCL Department of Physics & Astronomy) ...

Using air transportation data to predict pandemics

2013-12-13
Using air transportation data to predict pandemics Computational model demonstrates how disease spreads in a highly connected world Computational work conducted at Northwestern University has led to a new mathematical theory for understanding the global spread ...

Many older Americans rely on people, devices, other strategies to get by

2013-12-13
Many older Americans rely on people, devices, other strategies to get by ANN ARBOR— Only about a third of Americans ages 65 and older are fully able to take care of themselves and go about their daily lives completely independently, according to a new study ...

James Bond's preference for shaken martinis may be due to alcohol-induced tremor, say experts

2013-12-13
James Bond's preference for shaken martinis may be due to alcohol-induced tremor, say experts Famous spy drinks over 4 times the recommended weekly alcohol limit James Bond's alcohol consumption may explain why he prefers his martinis "shaken, not ...

Should your surname carry a health warning?

2013-12-13
Should your surname carry a health warning? Research: The Brady Bunch? New evidence for nominative determinism in patients' health: Retrospective, population based cohort study Patients named Brady could be at an increased risk of requiring a pacemaker compared ...

Is laughter really the best medicine?

2013-12-13
Is laughter really the best medicine? Food for thought: Laughter and MIRTH (methodical investigation of risibility, therapeutic and harmful): Narrative synthesis Laughter may not be the best medicine after all and can even be harmful to some patients, suggests ...

LAST 30 PRESS RELEASES:

Holographic displays offer a glimpse into an immersive future

Novel Au-BiFeO3 nanostructures for efficient and sustainable degradation of pollutants

It takes two to TANGO: New strategy to tackle fibrosis and scarring

Researchers aim to analyze pangenomes using quantum computing

Ready and vigilant: immune cells on standby

Securing competitiveness of energy-intensive industries through relocation: The pulling power of renewables

CAR T cell therapy targeting HER2 antigen shows promise against advanced sarcoma in phase I trial

Social change may explain decline in genetic diversity of the Y chromosome at the end of the Neolithic period

Aston University research finds that social media can be used to increase fruit and vegetable intake in young people

A vaccine to fight antibiotic resistance

European Hormone Day 2024: Endocrine community unites to raise public awareness and push for policy action on hormone health

Good heart health in middle age may preserve brain function among Black women as they age

The negative effects of racism impact sleep in adolescents

Study uses wearable devices to examine 3- to 6-year-olds’ impulsivity, inattentiveness

Will future hurricanes compromise New England forests’ ability to store and sequester carbon?

Longest study to date assesses cognitive impairment over time in adults with essential tremor

Does a woman’s heart health affect cognition in midlife?

Unveiling the mysteries of cell division in embryos with timelapse photography

Survey finds loneliness epidemic runs deep among parents

Researchers develop high-energy-density aqueous battery based on halogen multi-electron transfer

Towards sustainable food systems: global initiatives and innovations

Coral identified as oldest bioluminescent organism, suggesting a new model of ancient ecology

SRI chosen by DARPA to develop next-generation computational design of metallic parts and intelligent testing of alloys

NJIT engineers muffle invading pathogens with a 'molecular mask'

Perinatal transmission of HIV can lead to cognitive deficits

The consumption of certain food additive emulsifiers could be associated with the risk of developing type 2 diabetes

New cancer research made possible as Surrey scientists study lipids cell by cell 

Bioluminescence first evolved in animals at least 540 million years ago

Squids’ birthday influences mating

Star bars show Universe’s early galaxies evolved much faster than previously thought

[Press-News.org] Duke engineers make strides toward artificial cartilage
Composite material closest yet to properties of the real thing