PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Scientists reprogram blood cells into blood stem cells in mice

Induced blood-forming stem cells represent milestone in long-sought goal of regenerative medicine

Scientists reprogram blood cells into blood stem cells in mice
2014-04-24
(Press-News.org) BOSTON (April 24, 2014)—Researchers at Boston Children's Hospital have reprogrammed mature blood cells from mice into blood-forming hematopoietic stem cells (HSCs), using a cocktail of eight genetic switches called transcription factors. The reprogrammed cells, which the researchers have dubbed induced HSCs (iHSCs), have the functional hallmarks of HSCs, are able to self-renew like HSCs, and can give rise to all of the cellular components of the blood like HSCs.

The findings mark a significant step toward one of the most sought-after goals of regenerative medicine: the ability to produce HSCs suitable for hematopoietic stem cell transplantation (HSCT) from other cell types, in particular more mature or differentiated cells.

The research team, led by Derrick J. Rossi, PhD, of Boston Children's Program in Cellular and Molecular Medicine, reported their work today online in the journal Cell.

HSCs are the basic starting material for HSCTs, regardless of their source (bone marrow, umbilical cord blood, peripheral blood). The success of any individual patient's HSCT is tied to the number of HSCs available for transplant: the more cells, the more likely the transplant will take hold. However, HSCs are quite rare.

"HSCs only comprise about one in every 20,000 cells in the bone marrow," says Rossi. "If we could generate autologous HSCs from a patient's other cells, it could be transformative for transplant medicine and for our ability to model diseases of blood development."

In their study, Rossi and his collaborators, including lead author Jonah Riddell, PhD, screened gene expression in 40 different types of blood and blood progenitor cells from mice. From this screen they identified 36 transcription factors—genes that control when other genes are turned on and off—that are expressed exclusively in HSCs, not in cells that arise from them.

"Blood cell production invariably goes in one direction: from stem cells, to progenitors, to mature effector cells," Rossi explains. "We wanted to reverse the process and derive HSCs from differentiated blood cells using transcription factors that we found were specific to HSCs."

In a series of mouse transplantation experiments, Rossi's team found that six—Hlf, Runx1t1, Pbx1, Lmo2, Zfp37 and Prdm5—of the 36 factors, plus two additional factors not originally identified in their screen—Mycn and Meis1—were sufficient to robustly reprogram two kinds of blood progenitor cells (pro/pre B cells and common myeloid progenitor cells) into iHSCs.

Rossi's team reprogrammed their source cells by exposing them to viruses containing the genes for all eight factors and a molecular switch that turned the factor genes on in the presence of doxycycline. They then transplanted the exposed cells into recipient mice and activated the genes by giving the mice doxycycline.

The resulting iHSCs were capable of generating the entire blood cell repertoire in the transplanted mice, showing that they had gained the ability to differentiate into all blood lineages. Stem cells collected from those recipients were themselves capable of reconstituting the blood of secondary transplant recipients, proving that the eight-factor cocktail could instill the capacity for self-renewal—a hallmark property of HSCs.

Taking the work a step further, Rossi's team treated mature mouse myeloid cells with the same eight-factor cocktail. Again, when transplanted into mice, iHSCs were generated that produced all of the blood lineages and could regenerate the blood of secondary transplant recipients.

Stuart Orkin, MD, one of the leaders of Dana-Farber/Boston Children's Cancer and Blood Disorders Center and a co-author on the paper, notes that the use of mice as a kind of reactor for reprogramming marks a novel direction in HSC research.

"In the blood research field, no one has the conditions to expand HSCs in the tissue culture dish," he says. "Instead, by letting the reprogramming occur in mice, Rossi takes advantage of the signaling and environmental cues HSCs would normally experience."

Orkin adds that iHSCs are nearly indistinguishable from normal HSCs at the transcriptional level. "The iHSCs have a gene expression pattern remarkably similar to HSCs."

The current findings are far from translation to the transplantation clinic. Still to be answered are the precise contribution of each of the eight factors to the reprogramming process and whether approaches that do not rely on viruses and transcription factors can have similar success. It also is not yet known whether the same results can be achieved using human cells or whether other, non-blood cells can be reprogrammed to iHSCs.

But with these results Rossi's team has already succeeded where many other attempts have failed. And iHSCs in their current state constitute a promising springboard for better understanding of HSC biology and development.

"Our data show that the functional and molecular identity of HSCs can be tapped with relatively few factors using the paradigm of cellular reprogramming in a manner similar to the generation of induced pluripotent stem cells," Rossi says.

INFORMATION:

The study was supported by the National Heart, Lung and Blood Institute (grant numbers RO1HL107630 and U01HL100001), the National Institute of Aging (grant number R00AG029760), the National institute of Diabetes and Digestive and Kidney Diseases (grant number UO1DK072473-01), GlaxoSmithKline, the Leona M. and Harry B. Hemlsley Charitable Trust, the New York Stem Cell Foundation and the Harvard Stem Cell Institute. Dr. Orkin is an investigator with the Howard Hughes Medical Institute.

Boston Children's Hospital is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including seven members of the National Academy of Sciences, 14 members of the Institute of Medicine and 14 members of the Howard Hughes Medical Institute comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's today is a 395-bed comprehensive center for pediatric and adolescent health care. Boston Children's is also the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Boston Children's, visit: http://vectorblog.org.

[Attachments] See images for this press release:
Scientists reprogram blood cells into blood stem cells in mice

ELSE PRESS RELEASES FROM THIS DATE:

To mark territory or not to mark territory: Breaking the pheromone code

To mark territory or not to mark territory: Breaking the pheromone code
2014-04-24
LA JOLLA, CA— April 24, 2014 —A team led by scientists at The Scripps Research Institute (TSRI) has deciphered the surprisingly versatile code by which chemical cues help trigger some of the most basic behaviors in mice. The findings shed light on the evolution of mammalian behaviors—which include human behaviors—and their underlying brain mechanisms. "How does an individual respond differently to the environment based on experience? How does it distinguish itself from others? These are some of the fundamental questions that a study like this one helps us address," ...

Genetic legacy from the Ottoman Empire: Single mutation causes rare brain disorder

2014-04-24
An international team of researchers have identified a previously unknown neurodegenerative disorder and discovered it is caused by a single mutation in one individual born during the Ottoman Empire in Turkey about 16 generations ago. The genetic cause of the rare disorder was discovered during a massive analysis of the individual genomes of thousands of Turkish children suffering from neurological disorders. "The more we learn about basic mechanisms behind rare forms of neuro-degeneration, the more novel insights we can gain into more common diseases such as Alzheimer's ...

Oops! Researchers find neural signature for mistake correction

2014-04-24
Culminating an 8 year search, scientists at the RIKEN-MIT Center for Neural Circuit Genetics captured an elusive brain signal underlying memory transfer and, in doing so, pinpointed the first neural circuit for "oops" ? the precise moment when one becomes consciously aware of a self-made mistake and takes corrective action. The findings, published in Cell, verified a 20 year old hypothesis on how brain areas communicate. In recent years, researchers have been pursuing a class of ephemeral brain signals called gamma oscillations, millisecond scale bursts of synchronized ...

Large-scale identification and analysis of suppressive drug interactions

2014-04-24
TORONTO – Baker's yeast is giving scientists a better understanding of drug interactions, which are a major cause of hospitalization and illness world-wide. When two or more medications are taken at the same time, one can suppress or enhance the effectiveness of the other. Similarly, one drug may magnify the toxicity of another. These types of interactions are a major cause of illness and hospitalization. However, there are severe practical limits on the practical scope of drug studies in humans. Limits come in part from ethics and in part from the staggering expense. ...

Skin layer grown from human stem cells could replace animals in drug and cosmetics testing

2014-04-24
An international team led by King's College London and the San Francisco Veteran Affairs Medical Center (SFVAMC) has developed the first lab-grown epidermis – the outermost skin layer - with a functional permeability barrier akin to real skin. The new epidermis, grown from human pluripotent stem cells, offers a cost-effective alternative lab model for testing drugs and cosmetics, and could also help to develop new therapies for rare and common skin disorders. The epidermis, the outermost layer of human skin, forms a protective interface between the body and its external ...

Scripps Research Institute scientists find new point of attack on HIV for vaccine development

Scripps Research Institute scientists find new point of attack on HIV for vaccine development
2014-04-24
LA JOLLA, CA— April 24, 2014 —A team led by scientists at The Scripps Research Institute (TSRI) working with the International AIDS Vaccine Initiative (IAVI) has discovered a new vulnerable site on the HIV virus. The newly identified site can be attacked by human antibodies in a way that neutralizes the infectivity of a wide variety of HIV strains. "HIV has very few known sites of vulnerability, but in this work we've described a new one, and we expect it will be useful in developing a vaccine," said Dennis R. Burton, professor in TSRI's Department of Immunology and Microbial ...

Three-banded panther worm debuts as a new model in the study of regeneration

Three-banded panther worm debuts as a new model in the study of regeneration
2014-04-24
CAMBRIDGE, Mass. (April 24, 2014) – Closely resembling plump grains of wild rice set in motion, the three-banded panther worms swimming in disposable containers in Whitehead Institute Member Peter Reddien's lab hardly seem like the next big thing in regeneration. And yet, these little-studied organisms possess the ability to regenerate any part of their bodies and are amenable to molecular studies in the lab, making them a valuable addition to a field keen on understanding how mechanisms controlling regeneration have evolved over millennia and how they might be activated ...

Engineered E. coli produces high levels of D-ribose as described in Industrial Biotechnology journal

Engineered E. coli produces high levels of D-ribose as described in Industrial Biotechnology journal
2014-04-24
New Rochelle, NY, April 24, 2014—D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia coli to increase the bacteria's ability to produce D-ribose is a critical step toward achieving more efficient industrial-scale production of this valuable chemical, as described in an article in Industrial Biotechnology, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available on the Industrial Biotechnology ...

Oxygen diminishes the heart's ability to regenerate, researchers discover

Oxygen diminishes the hearts ability to regenerate, researchers discover
2014-04-24
DALLAS – April 24, 2014 – Scientific research at UT Southwestern Medical Center previously discovered that the newborn animal heart can heal itself completely, whereas the adult heart lacks this ability. New research by the same team today has revealed why the heart loses its incredible regenerative capability in adulthood, and the answer is quite simple – oxygen. Yes, oxygen. It is well-known that a major function of the heart is to circulate oxygen-rich blood throughout the body. But at the same time, oxygen is a highly reactive, nonmetallic element and oxidizing agent ...

New study helps to explain why breast cancer often spreads to the lung

2014-04-24
New research led by Alison Allan, PhD, a scientist at Western University and the Lawson Health Research Institute, shows why breast cancer often spreads or metastasizes to the lung. Breast cancer is the number one diagnosed cancer and the number two cause of cancer-related deaths among women in North America. If detected early, traditional chemotherapy and radiation have a high success rate, but once the disease spreads beyond the breast, many conventional treatments fail. In particular, the lung is one of the most common and deadly sites of breast cancer metastasis ...

LAST 30 PRESS RELEASES:

New compound from blessed thistle promotes functional nerve regeneration

Auburn’s McCrary Institute, ORNL to partner on first regional cybersecurity center to protect the nation’s electricity grid

New UNC-Chapel Hill study examines the increased adoption of they/them pronouns

Groundbreaking study reveals potential diagnostic marker for multiple sclerosis years before symptom onset

Annals of Internal Medicine presents breaking scientific news at ACP’s Internal Medicine Meeting 2024

Scientists discover new way to extract cosmological information from galaxy surveys

Shoe technology reduces risk of diabetic foot ulcers

URI-led team finds direct evidence of ‘itinerant breeding’ in East Coast shorebird species

Wayne State researcher aims to improve coding peer review practices

Researchers develop a new way to safely boost immune cells to fight cancer

Compact quantum light processing

Toxic chemicals from microplastics can be absorbed through skin

New research defines specific genomic changes associated with the transmissibility of the monkeypox virus

Registration of biological pest control products exceeds that of agrochemicals in Brazil

How reflecting on gratitude received from family can make you a better leader

Wearable technology assesses surgeons’ posture during surgery

AATS and CRF® partner on New York Valves: The structural heart summit

Postpartum breast cancer and survival in women with germline BRCA pathogenic variants

Self-administered acupressure for probable knee osteoarthritis in middle-aged and older adults

2024 Communicator Award goes to “Cyber and the City” research team based in Tübingen

A new therapeutic target for traumatic brain injury

Cosmic rays streamed through Earth’s atmosphere 41,000 years ago

ACP issues clinical recommendations for newer diabetes treatments

New insights into the connections between alcohol consumption and aggressive liver cancer

Unraveling water mysteries beyond Earth

Signs of multiple sclerosis show up in blood years before symptoms

Ghost particle on the scales

Light show in living cells

Climate change will increase value of residential rooftop solar panels across US, study shows

Could the liver hold the key to better cancer treatments?

[Press-News.org] Scientists reprogram blood cells into blood stem cells in mice
Induced blood-forming stem cells represent milestone in long-sought goal of regenerative medicine