PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

You may have billions and billions of good reasons for being unfit

Scientists discover that modifications to the RNA of the powerhouses in each of your body's countless cells might be influencing your fitness

2014-04-24
(Press-News.org) This news release is available in French.

Although our chromosomes are relatively stable within our lifetimes, the genetic material found in our mitochondria is highly variable across individuals and may impact upon human health, say researchers at the University of Montreal and its affiliated CHU Sainte-Justine Hospital. Genomes are changing, not just from generation to generation, but even and in fact within our individual cells. The researchers are the first to identify the extent to which the editing processes of RNA code can vary across a large number of individuals. "Mitochondria are the power stations of our cells, and the more power a cell needs, such as a muscle cell, the more mitochondria it has. Mitochondria are organelles in our cells with their own genetic code, separate from the DNA in our chromosomes, and the many mitochondria in the same individual can have different genetic mutations," explained Alan Hodgkinson, who is first author of the study. "The many mitochondria in the same cell can have different genetic mutations. Our research helps us to understand how variable mitochondrial RNA processing can be and what the possible consequences of that might be on health." By way of example, the researchers have found an association between the level of modification of RNA and our basal metabolic rate – the rate at which we are able to convert food into energy to power our bodies. The findings add extra layers of complexity to our understanding of how genetics influence our health.

The study was made possible thanks to the participation of nearly 40,000 Quebecers in the CARTaGENE initiative. CARTaGENE is one of the world's most comprehensive banks of genetic information: in addition to genetic information, participants share their health history, residential information, ethnicity, languages spoken and their family history of disease. Philip Awadalla is Director of the CARTaGENE initiative and lead author of the study. "The people of Quebec want to take part in science," he said. "This program is unique in the world. Other initiatives are taking place, but they aren't as comprehensive. Elsewhere, researchers are able to recruit 5% of the people they invite. Quebecers' collaboration rate is five times that." CARTaGENE's data and samples are available to the local and international research community.

The researchers looked specifically at mutations in the RNA of the mitochondria. If DNA is the printing press that determines the functions of a living organism, RNA is the print that it leaves behind. And just like with a printing press, sometimes the print (known as transcription) is slightly different from the press. "We looked at the variation within and across individuals in the mitochondrial RNA. This is the first survey of mitochondria-wide RNA variation at a population level," Hodgkinson explained. "We used the data of 1,000 participants in the CARTaGENE initiative, making this the largest RNA sequencing in the world to date. With this kind of depth of information, we've identified a vast array of fine-scaled differences not just between individuals but also within individuals – and that's the power of the data. But within that, we focused on one specific signature that we found really interesting – the signature in the sequencing data that represents the modification of RNA at important sites." "The other world first here is an unprecedented level of resolution – we're not only capturing change happening at the DNA level, now we're capturing "epiphenomena" happening at the RNA level. We can compare across individuals to see how variable different individuals are within themselves," Awadalla added.

Many other factors are at play in determining the variation in the transcription of mitochondrial RNA. "Your DNA is mostly found in the nucleus of each cell, and there is interaction between products from the genome of the nucleus and the genome of the mitochondria to create cellular energy – they're not completely separate," Hodgkinson explained. "We find an association between variation in a nuclear gene – the DNA that's from your chromosomes – with the level of modification in the mitochondrial RNA. The resulting modifications may impact cellular energy production, but there is much more work to be done to confirm and fully understand these processes".

While the mechanisms at work in our body may offer couch potatoes a handy excuse, the actual outcomes in terms of our health may not be deterministic. "It makes sense that we would see an association between mitochondria and metabolism rates, because mitochondria are the power packs of each cell. We have determined that our genome's ability to modify itself is partly hard-wired – the open question is how does our genome react to exposures in the environment?" Awadalla said.

INFORMATION: About this study Alan Hodgkinson, Youssef Idaghdour, Elias Gbeha, Jean-Christophe Grenier, Elodie Hip-Ki, Vanessa Bruat, Jean-Philippe Goulet, Thibault de Malliard, and Philip Awadalla published "High Resolution Genomic Analysis of Human Mitochondrial RNA Sequence Variation" in Science on April 25, 2014. All researchers are affiliated with the Department of Pediatrics at the University of Montreal and Centre hospitalier Sainte-Justine Research Centre. The University of Montreal is officially known as Université de Montréal. Youssef Idaghdour is also affiliated with the Department of Biology at New York University Abu Dhabi. This study was funded by Genome Quebec, the Canadian Partnership Against Cancer, Quebec's Network of Applied Medical Genetics, the Fonds de recherche du Québec – Santé, the Fonds de recherche du Québec – Nature et technologies, the Banting and FRSQ Fellowship Programs and used equipment funded by the Canada Foundation for Innovation.


ELSE PRESS RELEASES FROM THIS DATE:

Ocean microbes display remarkable genetic diversity

2014-04-24
CAMBRIDGE, Mass-- The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live in the oceans, forming the base of the marine food chain and occupying a range of ecological niches based on temperature, light and chemical preferences, and interactions with other species. But the full extent and characteristics of diversity within this single species remains a puzzle. To probe this question, scientists in MIT's Department of Civil ...

Channel makeover bioengineered to switch off neurons

Channel makeover bioengineered to switch off neurons
2014-04-24
Scientists have bioengineered, in neurons cultured from rats, an enhancement to a cutting edge technology that provides instant control over brain circuit activity with a flash of light. The research funded by the National Institutes of Health adds the same level of control over turning neurons off that, until now, had been limited to turning them on. "What had been working through a weak pump can now work through a highly responsive channel with many orders of magnitude more impact on cell function," explained Karl Deisseroth, M.D., Ph.D., of Stanford University, Stanford, ...

Tsetse fly genome reveals weaknesses

2014-04-24
Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals. The tsetse fly spreads the parasitic diseases human African trypanosomiasis, known as sleeping sickness, and Nagana that infect humans and animals respectively. Throughout sub-Saharan Africa, 70 million people are currently at risk of deadly infection. Human African trypanosomiasis is on the World Health Organization's (WHO) list of neglected tropical diseases and since 2013 ...

Stanford team makes switching off cells with light as easy as switching them on

Stanford team makes switching off cells with light as easy as switching them on
2014-04-24
STANFORD, Calif. — In 2005, a Stanford University scientist discovered how to switch brain cells on or off with light pulses by using special proteins from microbes to pass electrical current into neurons. Since then, research teams around the world have used the technique that this scientist, Karl Deisseroth, MD, PhD, dubbed "optogenetics" to study not just brain cells but heart cells, stem cells and the vast array of cell types across biology that can be regulated by electrical signals — the movement of ions across cell membranes. Optogenetics gave researchers a powerful ...

Cosmic illusion revealed

2014-04-24
This press release is available in Japanese. Kashiwa Japan - A team of researchers led by Robert Quimby at the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) has announced the discovery of a galaxy that magnified a background, Type Ia supernova thirtyfold through gravitational lensing. This is the first example of strong gravitational lensing of a supernova confirms the team's previous explanation for the unusual properties of this supernova. The team has further shown how such discoveries of supernovae of Type Ia (SNIa) can be made far ...

Untangling Brazil's controversial new forest code

Untangling Brazils controversial new forest code
2014-04-24
Approved in 2012, Brazil's new Forest Code has few admirers. Agricultural interests argue that it threatens the livelihoods of farmers. Environmentalists counter that it imperils millions of hectares of forest, threatening to release the billions of tons of carbon they contain. A new study, co-authored by Woods Hole Research Center (WHRC) scientists Michael Coe, Marcia Macedo and Brazilian colleagues, published this week in Science, aims to clarify the new law. Entitled "Cracking Brazil's Forest Code," the article is the first to quantify the implications of recent changes ...

Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers

Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers
2014-04-24
An international team led by researchers at Uppsala University and Stockholm University reports a breakthrough on understanding the demographic history of Stone-Age humans. A genomic analysis of eleven Stone-Age human remains from Scandinavia revealed that expanding Stone-age farmers assimilated local hunter-gatherers and that the hunter-gatherers were historically in lower numbers than the farmers. The study is published today, ahead of print, in the journal Science. The transition between a hunting-gathering lifestyle and a farming lifestyle has been debated for a century. ...

Some corals adjusting to rising ocean temperatures, Stanford researchers say

2014-04-24
To most people, 86-degree Fahrenheit water is pleasant for bathing and swimming. To most sea creatures, however, it's deadly. As climate change heats up ocean temperatures, the future of species such as coral, which provides sustenance and livelihoods to a billion people, is threatened. Through an innovative experiment, Stanford researchers led by biology Professor Steve Palumbi have shown that some corals can – on the fly – adjust their internal functions to tolerate hot water 50 times faster than they would adapt through evolutionary change alone. The findings, published ...

Genetic code of the deadly tsetse fly unraveled

Genetic code of the deadly tsetse fly unraveled
2014-04-24
A decade-long effort by members of the International Glossina Genome Initiative (IGGI) has produced the first complete genome sequence of the tsetse fly, Glossina morsitans. The blood-sucking insect is the sole transmitter of sleeping sickness, a potentially deadly disease endemic in sub-Saharan Africa. The vast store of genetic data will help researchers develop new ways to prevent the disease and provide insights into the tsetse fly's unique biology. The tsetse fly is quite unique in the insect world: it feeds exclusively on the blood of humans and animals, gives birth ...

Study finds accelerated soil carbon loss, increasing the rate of climate change

2014-04-24
Research published in Science today found that increased levels of carbon dioxide in the atmosphere cause soil microbes to produce more carbon dioxide, accelerating climate change. Two Northern Arizona University researchers led the study, which challenges previous understanding about how carbon accumulates in soil. Increased levels of CO2 accelerate plant growth, which causes more absorption of CO2 through photosynthesis. Until now, the accepted belief was that carbon is then stored in wood and soil for a long time, slowing climate change. Yet this new research suggests ...

LAST 30 PRESS RELEASES:

Empty-handed neurons might cause neurodegenerative diseases

Black women hospitalised in USA with blood infection resistant to last-resort antibiotic at increased risk of death

NEC Society Statement on the Watson vs. Mead Johnson Verdict

Lemur’s lament: When one vulnerable species stalks another

Surf clams off the coast of Virginia reappear – and rebound

Studying optimization for neuromorphic imaging and digital twins

ORNL researchers win Best Paper award for nickel-based alloy tailoring

New beta-decay measurements in mirror nuclei pin down the weak nuclear force

Study uncovers neural mechanisms underlying foraging behavior in freely moving animals

Gene therapy is halting cancer. Can it work against brain tumors?

New copper-catalyzed C-H activation strategy from Scripps Research

New compound from blessed thistle promotes functional nerve regeneration

Auburn’s McCrary Institute, ORNL to partner on first regional cybersecurity center to protect the nation’s electricity grid

New UNC-Chapel Hill study examines the increased adoption of they/them pronouns

Groundbreaking study reveals potential diagnostic marker for multiple sclerosis years before symptom onset

Annals of Internal Medicine presents breaking scientific news at ACP’s Internal Medicine Meeting 2024

Scientists discover new way to extract cosmological information from galaxy surveys

Shoe technology reduces risk of diabetic foot ulcers

URI-led team finds direct evidence of ‘itinerant breeding’ in East Coast shorebird species

Wayne State researcher aims to improve coding peer review practices

Researchers develop a new way to safely boost immune cells to fight cancer

Compact quantum light processing

Toxic chemicals from microplastics can be absorbed through skin

New research defines specific genomic changes associated with the transmissibility of the monkeypox virus

Registration of biological pest control products exceeds that of agrochemicals in Brazil

How reflecting on gratitude received from family can make you a better leader

Wearable technology assesses surgeons’ posture during surgery

AATS and CRF® partner on New York Valves: The structural heart summit

Postpartum breast cancer and survival in women with germline BRCA pathogenic variants

Self-administered acupressure for probable knee osteoarthritis in middle-aged and older adults

[Press-News.org] You may have billions and billions of good reasons for being unfit
Scientists discover that modifications to the RNA of the powerhouses in each of your body's countless cells might be influencing your fitness