PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

'Love handles' melt away at the push of a button

Researchers at the University of Bonn decode a kind of trigger switch for the conversion of fat cells

2013-04-23
(Press-News.org) For a long time, scientists have dreamt of converting undesirable white fat cells into brown fat cells and thus simply have excess pounds melt away. Researchers at the University of Bonn have now gotten a step closer to this goal: They decoded a "toggle switch" in mice which can significantly stimulate fat burning. The results are now being presented in the scientifc journal "Nature Communications".

Many people not only in industrialized nations struggle with excess weight - but all fat is not alike. "Love handles" in particular contain troublesome white fat cells which store excess food. Brown fat cells are the exact opposite: they burn excess energy as the desirable "heaters" of the body. Scientists at the University of Bonn working with Prof. Dr. Alexander Pfeifer, Director of the Institute for Pharmacology and Toxicology, have spent years using animal models to explore how the undesirable white fat can be converted into sought-after brown fat. "In this way, excess pounds may be able to simply be melted away and obesity combated", says Prof. Pfeifer.

A kind of "trigger switch" spurs fat burning

The researchers have now decoded a "microRNA switch" in mice which is important for brown fat cells. Micro-RNAs are located in the genome of cells and very quickly and efficiently regulate gene activity. The researchers studied a specific microRNA: microRNA 155. The gene regulator micro-RNA 155 inhibits a certain transcription factor, that controls brown fat cell function. Surprisingly, Prof. Pfeifer and his team found that the transcription factor also regulates the levels microRNA 155 establishing a tight feed-back loop that works like a toggle switch: When the microRNA is highly expressed brown fat cell differentiation is blocked; conversely, if the transcription factor wins the upper hand, brown fat is produced at an increased level and this in turn boosts fat burning in the body.

In knockout mice, the gene for Micro-RNA 155 was silent

The researchers at Bonn University and their colleagues from the Federal Institute of Drugs and Medical Devices (BfArM) and from the University of Regensburg worked with so-called transgenic and knockout mice in whom the gene for micro-RNA 155 was either increased or silenced. "The mechanism was already set in motion when the micro-RNA 155 was only halved in the mice," reports lead author Yong Chen, graduate student of the NRW International Graduate School BIOTECH-PHARMA. The mice then had significantly more brown fat cells available than did the control gro up - and had even converted white fat cells into brown fat cells.

Clues to the causes of lipid metabolism diseases

The micro-RNA functions as an antagonist to the brown fat cells. "As long as enough micro-RNA 155 is present, the production of brown fat cells is blocked," says Chen. Only if it falls below a certain proportion does this brake let up; the blueprint for brown fat can be read and implemented by the cell - the desired fat burners can develop. These findings help scientists better understand the causes of lipid metabolism diseases.

Hope for new therapies against obesity

The scientists at the University of Bonn see in their results a potential starting point for drugs to combat obesity. The researchers have clues to the fact that the results, if anything, can be transferred from mice to humans. Thus, for example, researchers in Leipzig found increased levels of micro-RNA 155 in significantly overweight patients. This corresponds to findings from animal models: A lot of micro-RNA 155 is associated with reduced fat burning. "However, we are still in the basic research stage," says Prof. Pfeifer. The path to suitable drugs is still a long one.

### Publication: miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit, Nature Communications, DOI: 10.1038/ncomms2742

Contact Information:

Prof. Dr. Alexander Pfeifer
Institute for Pharmacology and Toxicology
Tel. 0228/28751300
E-Mail: alexander.pfeifer@uni-bonn.de


ELSE PRESS RELEASES FROM THIS DATE:

Study finds that residential lawns efflux more carbon dioxide than corn fields

2013-04-23
More carbon dioxide is released from residential lawns than corn fields according to a new study. And much of the difference can likely be attributed to soil temperature. The data, from researchers at Elizabethtown College, suggest that urban heat islands may be working at smaller scales than previously thought. These findings provide a better understanding of the changes that occur when agricultural lands undergo development and urbanization to support growing urban populations. David Bowne, assistant professor of biology, led the study to look at the amount of carbon ...

Whether human or hyena, there's safety in numbers

2013-04-23
Humans, when alone, see threats as closer than they actually are. But mix in people from a close group, and that misperception disappears. In other words, there's safety in numbers, according to a new study by two Michigan State University scholars. Their research provides the first evidence that people's visual biases change when surrounded by members of their own group. "Having one's group or posse around actually changes the perceived seriousness of the threat," said Joseph Cesario, lead author on the study and assistant professor of psychology. "In that situation, ...

Study: Source of organic matter affects Bay water quality

2013-04-23
Each time it rains, runoff carries an earthy tea steeped from leaf litter, crop residue, soil, and other organic materials into the storm drains and streams that feed Chesapeake Bay. A new study led by researchers at William & Mary's Virginia Institute of Marine Science reveals that land use in the watersheds from which this "dissolved organic matter" originates has important implications for Bay water quality, with the organic carbon in runoff from urbanized or heavily farmed landscapes more likely to persist as it is carried downstream, thus contributing energy to fuel ...

New technology that improves your brain

2013-04-23
TAMPA, Fla. (April 23, 2013) – Improving brain function is one of the topics explored in the latest issue of Technology and Innovation – Proceedings of the National Academy of Inventors® (https://www.cognizantcommunication.com/component/content/article/636). The special issue, which also contains studies on medical technology and health care delivery, contains two articles on brain health: one on preventing and curing mental illness and one on improving the brain through training. The BRAINnet Foundation uses technology to prevent and cure mental illnesses The non-profit ...

Insights into deadly coral bleaching could help preserve reefs

2013-04-23
Coral reefs are stressed the world over and could be in mortal danger because of climate change. But why do some corals die and others not, even when exposed to the same environmental conditions? An interdisciplinary research team from Northwestern University and The Field Museum of Natural History has a surprising answer: The corals themselves play a role in their susceptibility to deadly coral bleaching due to the light-scattering properties of their skeletons. No one else has shown this before. Using optical technology designed for early cancer detection, the researchers ...

Shoulder injuries in baseball pitchers could be prevented with 3-D motion detection system

2013-04-23
MAYWOOD, Ill. -- A new 3-D motion detection system could help identify baseball pitchers who are at risk for shoulder injuries, according to a new study. The system can be used on the field, and requires only a laptop computer. Other systems that evaluate pitchers' throwing motions require cameras and other equipment and generally are confined to indoor use. Loyola University Medical Center sports medicine surgeon Pietro Tonino, MD, is a co-author of the study, published in the journal Musculoskeletal Surgery. In a well-rested pitcher, the humerus (upper arm bone) ...

The crystal's corners: New nanowire structure has potential to increase semiconductor applications

2013-04-23
There's big news in the world of tiny things. New research led by University of Cincinnati physics professors Howard Jackson and Leigh Smith could contribute to better ways of harnessing solar energy, more effective air quality sensors or even stronger security measures against biological weapons such as anthrax. And it all starts with something that's 1,000 times thinner than the typical human hair – a semiconductor nanowire. UC's Jackson, Smith, recently graduated PhD student Melodie Fickenscher and physics doctoral student Teng Shi, as well as several colleagues ...

Virus kills melanoma in animal model, spares normal cells

2013-04-23
Researchers from Yale University School of Medicine have demonstrated that vesicular stomatitis virus (VSV) is highly competent at finding, infecting, and killing human melanoma cells, both in vitro and in animal models, while having little propensity to infect non-cancerous cells. "If it works as well in humans, this could confer a substantial benefit on patients afflicted with this deadly disease," says Anthony van den Pol, a researcher on the study. The research was published online ahead of print in the Journal of Virology. Most normal cells resist virus infection ...

Researchers identify new pathway, enhancing tamoxifen to tame aggressive breast cancer

2013-04-23
Tamoxifen is a time-honored breast cancer drug used to treat millions of women with early-stage and less-aggressive disease, and now a University of Rochester Medical Center team has shown how to exploit tamoxifen's secondary activities so that it might work on more aggressive breast cancer. The research, published in the journal EMBO Molecular Medicine, is a promising development for women with basal-like breast cancer, sometimes known as triple-negative disease. This subtype has a poor prognosis because it is notoriously resistant to treatment. In fact, basal-like cancers ...

Infants' sweat response predicts aggressive behavior as toddlers

2013-04-23
Infants who sweat less in response to scary situations at age 1 show more physical and verbal aggression at age 3, according to new research published in Psychological Science, a journal of the Association for Psychological Science. Lower levels of sweat, as measured by skin conductance activity (SCA), have been linked with conduct disorder and aggressive behavior in children and adolescents. Researchers hypothesize that aggressive children may not experience as strong of an emotional response to fearful situations as their less aggressive peers do; because they have ...

LAST 30 PRESS RELEASES:

Machine learning tool can predict serious transplant complications months earlier

Prevalence of over-the-counter and prescription medication use in the US

US child mental health care need, unmet needs, and difficulty accessing services

Incidental rotator cuff abnormalities on magnetic resonance imaging

Sensing local fibers in pancreatic tumors, cancer cells ‘choose’ to either grow or tolerate treatment

Barriers to mental health care leave many children behind, new data cautions

Cancer and inflammation: immunologic interplay, translational advances, and clinical strategies

Bioactive polyphenolic compounds and in vitro anti-degenerative property-based pharmacological propensities of some promising germplasms of Amaranthus hypochondriacus L.

AI-powered companionship: PolyU interfaculty scholar harnesses music and empathetic speech in robots to combat loneliness

Antarctica sits above Earth’s strongest “gravity hole.” Now we know how it got that way

Haircare products made with botanicals protects strands, adds shine

Enhanced pulmonary nodule detection and classification using artificial intelligence on LIDC-IDRI data

Using NBA, study finds that pay differences among top performers can erode cooperation

Korea University, Stanford University, and IESGA launch Water Sustainability Index to combat ESG greenwashing

Molecular glue discovery: large scale instead of lucky strike

Insulin resistance predictor highlights cancer connection

Explaining next-generation solar cells

Slippery ions create a smoother path to blue energy

Magnetic resonance imaging opens the door to better treatments for underdiagnosed atypical Parkinsonisms

National poll finds gaps in community preparedness for teen cardiac emergencies

One strategy to block both drug-resistant bacteria and influenza: new broad-spectrum infection prevention approach validated

Survey: 3 in 4 skip physical therapy homework, stunting progress

College students who spend hours on social media are more likely to be lonely – national US study

Evidence behind intermittent fasting for weight loss fails to match hype

How AI tools like DeepSeek are transforming emotional and mental health care of Chinese youth

Study finds link between sugary drinks and anxiety in young people

Scientists show how to predict world’s deadly scorpion hotspots

ASU researchers to lead AAAS panel on water insecurity in the United States

ASU professor Anne Stone to present at AAAS Conference in Phoenix on ancient origins of modern disease

Proposals for exploring viruses and skin as the next experimental quantum frontiers share US$30,000 science award

[Press-News.org] 'Love handles' melt away at the push of a button
Researchers at the University of Bonn decode a kind of trigger switch for the conversion of fat cells