(Press-News.org) When a mouse smells a cat, it instinctively avoids the feline or risks becoming dinner. How? A Northwestern University study involving olfactory receptors, which underlie the sense of smell, provides evidence that a single gene is necessary for the behavior.
A research team led by neurobiologist Thomas Bozza has shown that removing one olfactory receptor from mice can have a profound effect on their behavior. The gene, called TAAR4, encodes a receptor that responds to a chemical that is enriched in the urine of carnivores. While normal mice innately avoid the scent marks of predators, mice lacking the TAAR4 receptor do not.
The study, published April 28 in the journal Nature, reveals something new about our sense of smell: individual genes matter.
Unlike our sense of vision, much less is known about how sensory receptors contribute to the perception of smells. Color vision is generated by the cooperative action of three light-sensitive receptors found in sensory neurons in the eye. People with mutations in even one of these receptors experience color blindness.
"It is easy to understand how each of the three color receptors is important and maintained during evolution," said Bozza, an author of the paper, "but the olfactory system is much more complex."
In contrast to the three color receptors, humans have 380 olfactory receptor genes, while mice have more than 1,000. Common smells like the fragrance of coffee and perfumes typically activate many receptors.
"The general consensus in the field is that removing a single olfactory receptor gene would not have a significant effect on odor perception," said Bozza, an assistant professor of neurobiology in the Weinberg College of Arts and Sciences.
Bozza and his colleagues tested this assumption by genetically removing a specific subset of olfactory receptors called trace amine-associated receptors, or TAARs, in mice. Mice have 15 TAARs. One is expressed in the brain and responds to amine neurotransmitters and common drugs of abuse such as amphetamine. The other 14 are found in the nose and have been coopted to detect odors.
Bozza's group has shown that the TAARs are extremely sensitive to amines -- a class of chemicals that is ubiquitous in biological systems and is enriched in decaying materials and rotting flesh. Mice and humans typically avoid amines since they have a strongly unpleasant, fishy quality.
Bozza's team, including the paper's lead authors, postdoctoral fellow Adam Dewan and graduate student Rodrigo Pacifico, generated mice that lack all 14 olfactory TAAR genes. These mice showed no aversion to amines. In a second experiment, the researchers removed only the TAAR4 gene. TAAR4 responds selectively to phenylethylamine (PEA), an amine that is concentrated in carnivore urine. They found that mice lacking TAAR4 fail to avoid PEA, or the smell of predator cat urine, but still avoid other amines.
"It is amazing to see such a selective effect," Dewan said. "If you remove just one olfactory receptor in mice, you can affect behavior."
The TAAR genes are found in all mammals studied so far, including humans. "The fact that TAARs are highly conserved means they are likely important for survival," Bozza said.
One idea is that the TAARs may make animals very sensitive to the smell of amines. Humans may have TAAR genes to avoid rotting foods, which become enriched in amines during the decomposition process. In fact, the TAARs may relay information to a specific part of the brain that elicits innately aversive behavior in animals.
Bozza's lab has recently shown that neurons in the nose that express the TAARs connect to with a specific region of the olfactory bulb -- the part of the brain that first receives olfactory information. This suggests that the TAARs may elicit hardwired responses to amines in mice, and perhaps humans.
"We hope this work will reveal specific brain circuits that underlie instinctive behaviors in mammals," Bozza said. "Doing so will help us understand how neural circuits contribute to behavior."
INFORMATION:
The paper is entitled "Non-redundant coding of aversive odours in the main olfactory pathway." In addition to Bozza, Dewan and Pacifico, the paper is co-authored by Ross Zhan, an undergraduate student at Northwestern, and Dmitry Rinberg, from the Howard Hughes Medical Institute Janelia Farm Research Campus.
END
PHILADELPHIA—The well-studied protein VEGF does not appear to have any prognostic or predictive value for men with locally advanced prostate cancer, researchers from the Department of Radiation Oncology at Thomas Jefferson University Hospital and other institutions found in a retrospective study published online April 25 in the journal BMC Radiation Oncology.
VEGF, or vascular endothelial growth factor, induces blood vessel growth, a process known as angiogenesis, which is a key element in solid tumor growth and metastasis. It is overexpressed, along with its receptors, ...
BLOOMINGTON, Ind. -- A team of American and Italian neuroscientists has identified a cellular change in the brain that accompanies obesity. The findings could explain the body's tendency to maintain undesirable weight levels, rather than an ideal weight, and identify possible targets for pharmacological efforts to address obesity.
The findings, published in the Proceedings of the National Academy of Sciences Early Edition this week, identify a switch that occurs in neurons within the hypothalamus. The switch involves receptors that trigger or inhibit the release of the ...
DRY TORTUGAS, Fla. – Nesting green sea turtles are benefiting from marine protected areas by using habitats found within their boundaries, according to a U.S. Geological Survey study that is the first to track the federally protected turtles in Dry Tortugas National Park.
Green turtles are listed as endangered in Florida and threatened throughout the rest of their range, and the habits of green sea turtles after their forays to nest on beaches in the Southeast U.S. have long remained a mystery. Until now, it was not clear whether the turtles made use of existing protected ...
Researchers at the University of Arizona's Tumamoc Hill have digitized 106 years of growth data on individual plants, making the information available for study by people all over the world.
Knowing how plants respond to changing conditions over many decades provides new insights into how ecosystems behave.
The permanent research plots on Tumamoc Hill represent the world's longest-running study that monitors individual plants, said co-author Larry Venable, director of research at Tumamoc Hill.
Some of the plots date from 1906 -- and the birth, growth and death of ...
Selective serotonin reuptake inhibitors (SSRIs) – among the most widely prescribed antidepressant medications – are associated with increased risk of bleeding, transfusion, hospital readmission and death when taken around the time of surgery, according to an analysis led by researchers at UC San Francisco and Baystate Medical Center in Springfield, Mass.
The scientists looked at the medical records of more than 530,000 patients who underwent surgery at 375 U.S. hospitals between 2006 and 2008. Their results will be published on April 29 in JAMA Internal Medicine.
"There ...
WEST LAFAYETTE, Ind. - Researchers have found a way to see synthetic nanostructures and molecules using a new type of super-resolution optical microscopy that does not require fluorescent dyes, representing a practical tool for biomedical and nanotechnology research.
"Super-resolution optical microscopy has opened a new window into the nanoscopic world," said Ji-Xin Cheng, an associate professor of biomedical engineering and chemistry at Purdue University.
Conventional optical microscopes can resolve objects no smaller than about 300 nanometers, or billionths of a meter, ...
Body dysmorphic disorder is a disabling but often misunderstood psychiatric condition in which people perceive themselves to be disfigured and ugly, even though they look normal to others. New research at UCLA shows that these individuals have abnormalities in the underlying connections in their brains.
Dr. Jamie Feusner, the study's senior author and a UCLA associate professor of psychiatry, and his colleagues report that individuals with BDD have, in essence, global "bad wiring" in their brains — that is, there are abnormal network-wiring patterns across the brain ...
Surgery is often recommended for skin cancers, but older, sicker patients can endure complications as a result and may not live long enough to benefit from the treatment.
A new study led by UC San Francisco focused on the vexing problem of how best to handle skin cancers among frail, elderly patients. In the study sample, the researchers found that most non-melanoma skin cancers were typically treated surgically, regardless of the patient's life expectancy or whether the tumor was likely to recur or harm the patient.
One in five patients in the study reported ...
(CHICAGO) - A team of international researchers led by Northwestern Medicine scientists has identified how a defective protein plays a central role in a rare, lethal childhood disease known as Giant Axonal Neuropathy, or GAN. The finding is reported in the May 2013 Journal of Clinical Investigation.
GAN is an extremely rare and untreatable genetic disorder that strikes the central and peripheral nervous systems of young children. Those affected show no symptoms at birth; typically around age three the first signs of muscle weakness appear and progress slowly but steadily. ...
JUPITER, FL, April 29, 2013 – Proteins, the workhorses of the body, can have more than one function, but they often need to be very specific in their action or they create cellular havoc, possibly leading to disease.
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have uncovered how an enzyme co-factor can bestow specificity on a class of proteins with otherwise nonspecific biochemical activity.
The protein in question helps in the assembly of ribosomes, large macromolecular machines that are critical to protein production and cell growth. ...