(Press-News.org) In 2015, NASA, for the first time, will fly a space mission utilizing a radically different propellant—one which has reduced toxicity and is environmentally benign. This energetic ionic liquid, or EIL, is quite different from the historically employed hydrazine-based propellant, which was first used as a rocket fuel during World War II for the Messerschmitt Me 163B (the first rocket-powered fighter plane).
Within the U.S. space program, hydrazine was used on the 1970s Viking Mars program, and more recently in the Phoenix lander and Curiosity rover Mars missions, as well as in the Space Shuttle's auxiliary power units. Significantly, monopropellant hydrazine-fueled rocket engines are the norm in controlling the terminal descent of spacecraft. What makes hydrazine desirable as a propellant for this terminal descent role is that when combined with various catalysts, the result is an extremely exothermic reaction that releases significant heat in a very short time, producing energy in the form of large volumes of hot gas from a relatively small volume of hydrazine liquid.
Unfortunately, hydrazine has several significant drawbacks: it is very toxic when inhaled, corrosive on contact with skin, hazardously flammable, and falls short in providing the propulsive power required for future spacecraft systems. In 1998, driven by these challenges, Dr. Michael Berman, a Program Manager at the Arlington, Virginia-based Air Force Office of Scientific Research (AFOSR), the basic research arm of the Air Force Research Laboratory (AFRL), funded Dr. Tom Hawkins of the Propellants Branch, Rocket Propulsion Division at AFRL's Aerospace Systems Directorate, to find a more benign, yet even more powerful material to replace hydrazine.
This research effort was ultimately associated with a joint government and industry development program, the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) initiative, to improve U.S. rocket propulsion systems. IHPRPT challenged the Department of Defense, the National Air and Space Administration, and the rocket propulsion industry to double U.S. rocket propulsion capability (cost and performance) by 2010. Beginning in 1996, this IHPRPT challenge meant the development of propellants that would provide far greater energy density than current state-of-the-art propellants.
Dr. Hawkins' interest in EILs began early on in his career beginning at Lehigh University when he worked on advanced propellants for the Strategic Defense Initiative in the 1980s. Knowing the untapped potential of ionic liquids to provide high energy density materials, he embarked on an effort to design and characterize the EIL family. This effort was funded by AFOSR and continues to the present day.
But it was in 2002 that Dr. Hawkins, "…thought we were on the right track when we produced an ionic liquid monopropellant that incorporated an EIL that was investigated under our AFOSR program. This propellant class, known as AF-M315, has an energy density close to twice that of the state-of-the-art spacecraft monopropellant, hydrazine." With additional support from the IHPRPT program, the Missile Defense Agency (MDA) and related USAF missile programs, a full characterization of one of these new propellants, AF-M315E, was investigated for its overall safety and hazard properties. According to Dr. Hawkins, these safety properties, coupled with the performance of AF-M315E, were "…absolutely outstanding; we found the oral toxicity of AF-M315E to be less than that of caffeine, and its vapor toxicity to be negligible. The vapor flammability of AF-M315E was essentially nil, and this made it difficult to unexpectedly ignite and sustain combustion of AF-M315E—one could even put out small fires with the propellant!"
In 2005 NASA took a keen interest in this very promising alternative to hydrazine and performed further evaluations. Follow on work performed by Aerojet, Inc. brought AF-M315E engine design to a level that was very attractive for a technology transition to the commercial sector. But for that to occur, it was necessary to find a champion to sponsor the flight demonstration that would make AF-M315E spacecraft propulsion an 'off-the-shelf' choice for future propulsion systems. NASA became that champion in 2012 with their selection of Ball Aerospace & Technologies Corporation as the lead integrator for the Green Propellant Infusion Mission—a $45 million program that will produce new AF-M315E- based thrusters for NASA's 2015 spacecraft mission. Additional program team members consist of the Air force Research Laboratory, Aerojet, Inc., the Air Force Space & Missile Systems Center and the NASA/Glenn Research Center.
The field of energetic ionic liquids is the product of AFOSR-sponsored research at AFRL that is changing the landscape of work in the energetic materials community. According to Dr. Hawkins: "The AFOSR- funded program provided the synthesis and characterization work for an EIL that enabled the experimental USAF fuel, AF-M315E, to act as a high-energy density, environmentally benign, easy-to-handle replacement for spacecraft hydrazine fuel."
Hawkins also noted that twenty years is a well-recognized time period for producing such a revolutionary propellant approach and propulsion system due to the fact that the EIL approach to liquid propulsion is completely different than that of hydrazine, and, most significantly, the performance potentials of EIL-based propellants are not small incremental improvements, but significantly larger than any state-of-the-art propellant. As EIL-based propellants are developed, they will provide lower cost and safer propulsion system operations along with greater mission flexibility and faster mission response times.
INFORMATION: END
VIDEO:
Through the serendipity of science, researchers at the University of Pittsburgh have discovered a potential treatment for deadly, drug-resistant bacterial infections that uses the same approach that HIV uses to...
Click here for more information.
Through the serendipity of science, researchers at the University of Pittsburgh have discovered a potential treatment for deadly, drug-resistant bacterial infections that uses the same approach that HIV uses to infect cells. ...
DURHAM, N.C. -- A seven-year quest to understand how breast cancer cells resist treatment with the targeted therapy lapatinib has revealed a previously unknown molecular network that regulates cell death. The discovery provides new avenues to overcome drug resistance, according to researchers at Duke Cancer Institute.
"We've revealed multiple new signaling pathways that regulate cell death," said Sally Kornbluth, PhD, vice dean of Basic Science and professor of Pharmacology and Cancer Biology at Duke University School of Medicine. "And we've shown, at least in one disease, ...
Scientists at the Virginia Tech Carilion Research Institute have discovered how the predominant class of Alzheimer's pharmaceuticals might sharpen the brain's performance
One factor even more important than the size of a television screen is the quality of the signal it displays. Having a life-sized projection of Harry Potter dodging a Bludger in a Quidditch match is of little use if the details are lost to pixilation.
The importance of transmitting clear signals, however, is not relegated to the airwaves. The same creed applies to the electrical impulses navigating ...
A new robotic sensor deployed by Woods Hole Oceanographic Institution (WHOI) in Gulf of Maine coastal waters may transform the way red tides or harmful algal blooms (HABs) are monitored and managed in New England. The instrument was launched at the end of last month, and a second such system will be deployed later this spring.
The results will add critical data to weekly real-time forecasts of New England red tide this year distributed to more than 150 coastal resource and fisheries managers in six states as well as federal agencies such as NOAA, the FDA and the EPA. ...
GAINESVILLE, Fla. — The University of Florida today unveiled the state's most powerful supercomputer, a machine that will help researchers find life-saving drugs, make decades-long weather forecasts and improve armor for troops.
The HiPerGator supercomputer and recent tenfold increase in the size of the university's data pipeline make UF one of the nation's leading public universities in research computing.
"If we expect our researchers to be at the forefront of their fields, we need to make sure they have the most powerful tools available to science, and HiPerGator ...
LA JOLLA, CA---Scientists at the Salk Institute for Biological Studies have identified a protein that drives the formation of pituitary tumors in Cushing's disease, a development that may give clinicians a therapeutic target to treat this potentially life-threatening disorder.
The protein, called TR4 (testicular orphan nuclear receptor 4), is one of the human body's 48 nuclear receptors, a class of proteins found in cells that are responsible for sensing hormones and, in response, regulating the expression of specific genes. Using a genome scan, the Salk team discovered ...
DARIEN, IL – A new study suggests that your level of sleepiness or alertness during the day may be related to the type of food that you eat.
Results show that higher fat consumption was associated with increased objective daytime sleepiness, while higher carbohydrate intake was associated with increased alertness. There was no relationship between protein consumption and sleepiness or alertness. These findings were independent of the subjects' gender, age, and body mass index as well as the total amount of sleep they were getting and their total caloric intake.
"Increased ...
DARIEN, IL – A new study suggests that regularity of bedtime prior to initiation of continuous positive airway pressure (CPAP) therapy is an important factor that may influence treatment compliance in adults with obstructive sleep apnea (OSA).
Results show that bedtime variability was a significant predictor of CPAP adherence, which was defined as four or more hours of treatment use per night. The odds of one-month CPAP non-adherence were 3.7 times greater for every one unit increase in habitual, or pre-treatment, bedtime variability.
"Long-term use of CPAP, such as ...
This press release is available in spanish. Testing Testing Testing Testing Testing Testing Testing Testing Testing Testing Testing Testing Testing Testing
### END ...
Boston (May 7, 2013) – The first successful cornea transplant with donor endothelial tissue preloaded by an eye bank has been performed at Massachusetts Eye and Ear in Boston, Mass. Roberto Pineda II, M.D., Director of the Refractive Surgery Service at Mass. Eye and Ear, and an Associate Professor of Ophthalmology at Harvard Medical School, recently performed the groundbreaking transplant.
Dr. Pineda performed the surgery utilizing donor endothelial tissue that was prepared and pre-loaded into EndoGlide™ (Angiotech Pharmaceuticals, Inc.) cartridges at the Lions Eye Institute ...