PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Differences between 'marathon mice' and 'couch potato mice' reveal key to muscle fitness

MicroRNAs are identified as the missing link between the 2 defining features of muscle fitness -- fuel-burning and fiber-type switching -- providing a potential new target for interventions that boost fitness in people with chronic illness or injury

2013-05-08
(Press-News.org) ORLANDO, Fla., May 8, 2013 – Researchers discovered that small pieces of genetic material called microRNAs link the two defining characteristics of fit muscles: the ability to burn sugar and fat and the ability to switch between slow- and fast-twitch muscle fibers. The team used two complementary mouse models—the "marathon mouse" and the "couch potato mouse"—to make this discovery. But what's more, they also found that active people have higher levels of one of these microRNAs than sedentary people. These findings, published May 8 in The Journal of Clinical Investigation, suggest microRNAs could be targeted for the development of new medical interventions aimed at improving muscle fitness in people with chronic illness or injury.

"In this study, we wanted to determine, on a molecular level, what makes a muscle fit during development or following exercise. This information is relevant to our efforts to improve muscle fitness in many health conditions, such as aging, cancer, and heart failure. These findings may also prove useful for our active members of the military, who become 'detrained' during injury and recovery time," said Daniel P. Kelly, M.D., director of Sanford-Burnham's Diabetes and Obesity Research Center and senior author of the study.

Marathon vs. couch potato mice

Fit muscle is known for its ability to do two things: 1) burn fat and sugars and 2) switch between slow-twitch and fast-twitch muscles. According to Kelly, muscle fitness only occurs if both are functioning properly.

Increased muscle endurance cannot occur without boosting both of these muscle components. Kelly and his team set out to determine what connects muscle metabolism and structure. To do this, they turned to two different mouse models, each specially engineered to produce distinct but related proteins that turn muscle-specific genes on and off.

The first model, dubbed the "marathon mouse," has a muscle-gene regulator called PPARβ/δ. These mice can run much further than normal mice. The second model, known as the "couch potato mouse," produces a different muscle-gene regulator, called PPARα. These mice are able to burn a lot of fuel, but they can't run very far.

MicroRNAs in muscle fitness

To identify the link between muscle metabolism and muscle fiber type-switching, Kelly's team compared the molecular differences between these two disparate mouse models.

First, the team found that PPARα couch potato mice have the optimal metabolic switch, but lack the muscle fiber switch. In contrast, PPARβ/δ marathon mice have the whole package necessary for muscle fitness.

The two mouse models also differed in molecular profiling, according to this study. The team discovered that marathon mice produce certain microRNAs that are capable of activating the fiber switch. By comparison, this same circuitry is suppressed in couch potato mice.

Digging a little deeper, Kelly's team determined that PPARβ/δ is connected to microRNAs via an intermediary called estrogen-related receptor (ERRγ). This protein collaborates with PPARβ/δ to turn on microRNAs. That's why marathon mice are fitter and have more type I muscle fibers than couch potato mice—their PPARβ/δ and ERRγ induce the right microRNAs.

Muscle-boosting potential for patients

To determine if their findings were relevant to human health, Kelly and his team worked with Steven R. Smith, M.D., director of the Florida Hospital—Sanford-Burnham Translational Research Institute for Metabolism and Diabetes. From there, the team obtained muscle tissue from sedentary people (those who don't exercise regularly) and active people in good shape.

Sure enough, ERRγ and one of the microRNAs elevated in PPARβ/δ marathon mice were also increased in active people, but not the sedentary group.

"We're now conducting additional human studies to further investigate the ERRγ-microRNA circuit as a potential avenue for improving fitness in people with chronic illness or injury," Kelly said. "For example, next we want to know what happens to this circuit during exercise and what effect it has on the cardiovascular system."



INFORMATION:



This research was funded by the U.S. National Institutes of Health (grants RO1DK045416, R01DK095686, R01AR41928, R01AG030226), American Heart Association, Robert A. Welch Foundation, Jon Holden DeHaan Foundation, Fondation Leducq TransAtlantic Network of Excellence in Cardiovascular Research Program, ERC, Ecole Polytechnique Fédérale de Lausanne, Swiss National Science Foundation, and Novartis Clinical Innovation Fund.

The study was co-authored by Zhenji Gan, Sanford-Burnham; John Rumsey, Sanford-Burnham; Bethany C. Hazen, The Scripps Research Institute; Ling Lai, Sanford-Burnham; Teresa C. Leone, Sanford-Burnham; Rick B. Vega, Sanford-Burnham; Hui Xie, Translational Research Institute for Metabolism and Diabetes, Florida Hospital; Kevin E. Conley, University of Washington Medical Center; Johan Auwerx, École Polytechnique Fédérale de Lausanne; Steven R. Smith, Sanford-Burnham, Translational Research Institute for Metabolism and Diabetes, Florida Hospital; Eric N. Olson, University of Texas Southwestern Medical Center; Anastasia Kralli, The Scripps Research Institute; and Daniel P. Kelly, Sanford-Burnham.

About Sanford-Burnham Medical Research Institute

Sanford-Burnham Medical Research Institute is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Sanford-Burnham takes a collaborative approach to medical research with major programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is recognized for its National Cancer Institute-designated Cancer Center and expertise in drug discovery technologies. Sanford-Burnham is a nonprofit, independent institute that employs 1,200 scientists and staff in San Diego (La Jolla), California and Orlando (Lake Nona), Florida. For more information, visit us at sanfordburnham.org.



ELSE PRESS RELEASES FROM THIS DATE:

More African-Americans have kidney transplants, but few are from live donors

2013-05-08
SAN DIEGO – While the percentage of kidney transplants involving live donors has remained stable for other minority populations, African Americans have seen a decline in live donors even as more of them receive kidney transplants, according to a study by Henry Ford Hospital in Detroit. Those findings will be presented May 8 at the annual meeting of the American Urological Association in San Diego. "African American race has been associated with disparities in care at every step of the kidney transplant process," says Jesse D. Sammon, D.O., a researcher at Henry Ford's ...

Thoracic endografts used successfully to remove tumors invading the aorta

2013-05-08
Minneapolis, MN, May 8, 2013 – Tumors have the potential to grow locally and invade neighboring organs. Some chest tumors may invade one of the great vessels of the body, the aorta. Surgical removal of these tumors is very challenging and necessitates the support of a heart-lung machine. Therefore there is an increased risk of complication and death. In a small series of patients, placing a stent within the aorta facilitated the subsequent removal of tumor and eliminated the need for heart-lung bypass. A report of these results is presented by Stéphane Collaud, MD, MSc, ...

JCI early table of contents for May 8, 2013

2013-05-08
Gene replacement in pigs ameliorates cystic fibrosis-associated intestinal obstruction Cystic fibrosis (CF) is caused by mutations in CFTR and is characterized by dysfunction of the lungs, liver, pancreas, and intestines. Approximately 15% of babies with CF are born with an obstruction of the small intestine known as meconium ileus, frequently the first sign of CF. Unlike in humans, meconium ileus occurs in 100% of newborn CF pigs. In this issue of the Journal of Clinical Investigation, Michael Welsh and colleagues at the University of Iowa demonstrate that transgenic ...

Gene replacement in pigs ameliorates cystic fibrosis-associated intestinal obstruction

2013-05-08
Cystic fibrosis (CF) is caused by mutations in CFTR and is characterized by dysfunction of the lungs, liver, pancreas, and intestines. Approximately 15% of babies with CF are born with an obstruction of the small intestine known as meconium ileus, frequently the first sign of CF. Unlike in humans, meconium ileus occurs in 100% of newborn CF pigs. In this issue of the Journal of Clinical Investigation, Michael Welsh and colleagues at the University of Iowa demonstrate that transgenic expression of normal CFTR in the intestine of CF pigs alleviated meconium ileus. Over time, ...

Alzheimer's disease is associated with removal of the synaptic protein ADAM10

2013-05-08
Alzheimer's disease is characterized by the accumulation of neurotoxic β-amyloid peptide (A-beta). ADAM10, a protein that resides in the neural synapses, has previously been shown to prevent the formation of A-beta. In this issue of the Journal of Clinical Investigation, Monica Di Luca and colleagues at the University of Milan in Milan, Italy, report that ADAM10 is removed from synapses through association with the protein AP2. Strikingly, the association between ADAM10 and AP2 was increased in human brain homogenates from Alzheimer's disease (AD) patients compared ...

Hit a 90 mph baseball? Scientists pinpoint how we see it coming

2013-05-08
How does San Francisco Giants slugger Pablo Sandoval swat a 95 mph fastball, or tennis icon Venus Williams see the oncoming ball, let alone return her sister Serena's 120 mph serves? For the first time, vision scientists at the University of California, Berkeley, have pinpointed how the brain tracks fast-moving objects. The discovery advances our understanding of how humans predict the trajectory of moving objects when it can take one-tenth of a second for the brain to process what the eye sees. That 100-millisecond holdup means that in real time, a tennis ball moving ...

Biosensor that detects antibiotic resistance brings us one step closer to fighting superbugs

2013-05-08
VIDEO: This is the article as it appears on jove.com. Click here for more information. On May 8th JoVE will publish research that demonstrates how a biosensor can detect antibiotic resistance in bacteria. This new technology is a preliminary step in identifying and fighting superbugs, a major public health concern that has led to more deaths than AIDS in the United States in recent years. The technology is the result of collaboration between Dr. Vitaly Vodyanoy at Auburn University ...

Discovery shows fat triggers rheumatoid arthritis

2013-05-08
AURORA, Colo. (May 8, 2013) – Scientists have discovered that fat cells in the knee secrete a protein linked to arthritis, a finding that paves the way for new gene therapies that could offer relief and mobility to millions worldwide. "We found that fat in the knee joints secretes a protein called pro-factor D which gives rise to another protein known as factor D that is linked to arthritis," said Nirmal Banda, Ph.D., associate professor of medicine in the Division of Rheumatology at the University of Colorado School of Medicine. "Without factor D, mice cannot get rheumatoid ...

New prostate cancer test improves risk assessment

2013-05-08
A new genomic test for prostate cancer can help predict whether men are more likely to harbor an aggressive form of the disease, according to a new UC San Francisco study. The test, which improves risk assessment when patients are first diagnosed, can also aid in determining which men are suitable for active surveillance – a way of managing the disease without direct treatment. Prostate cancer often grows slowly, and many of the quarter-million patients diagnosed annually in the United States never need treatment, which typically involves surgery, radiation or both. ...

An electronic nose can tell pears and apples apart

2013-05-08
Swedish and Spanish engineers have created a system of sensors that detects fruit odours more effectively than the human sense of smell. For now, the device can distinguish between the odorous compounds emitted by pears and apples. Researchers from the Polytechnic University of Valencia (UPV, Spain) and the University of Gävle (Sweden) have created an electronic nose with 32 sensors that can identify the odours given off by chopped pears and apples. "The fruit samples are placed in a pre-chamber into which an air flow is injected which reaches the tower with the sensors ...

LAST 30 PRESS RELEASES:

Father’s mental health can impact children for years

Scientists can tell healthy and cancerous cells apart by how they move

Male athletes need higher BMI to define overweight or obesity

How thoughts influence what the eyes see

Unlocking the genetic basis of adaptive evolution: study reveals complex chromosomal rearrangements in a stick insect

Research Spotlight: Using artificial intelligence to reveal the neural dynamics of human conversation

Could opioid laws help curb domestic violence? New USF research says yes

NPS Applied Math Professor Wei Kang named 2025 SIAM Fellow

Scientists identify agent of transformation in protein blobs that morph from liquid to solid

Throwing a ‘spanner in the works’ of our cells’ machinery could help fight cancer, fatty liver disease… and hair loss

Research identifies key enzyme target to fight deadly brain cancers

New study unveils volcanic history and clues to ancient life on Mars

Monell Center study identifies GLP-1 therapies as a possible treatment for rare genetic disorder Bardet-Biedl syndrome

Scientists probe the mystery of Titan’s missing deltas

Q&A: What makes an ‘accidental dictator’ in the workplace?

Lehigh University water scientist Arup K. SenGupta honored with ASCE Freese Award and Lecture

Study highlights gaps in firearm suicide prevention among women

People with medical debt five times more likely to not receive mental health care treatment

Hydronidone for the treatment of liver fibrosis associated with chronic hepatitis B

Rise in claim denial rates for cancer-related advanced genetic testing

Legalizing youth-friendly cannabis edibles and extracts and adolescent cannabis use

Medical debt and forgone mental health care due to cost among adults

Colder temperatures increase gastroenteritis risk in Rohingya refugee camps

Acyclovir-induced nephrotoxicity: Protective potential of N-acetylcysteine

Inhibition of cyclooxygenase-2 upregulates the nuclear factor erythroid 2-related factor 2 signaling pathway to mitigate hepatocyte ferroptosis in chronic liver injury

AERA announces winners of the 2025 Palmer O. Johnson Memorial Award

Mapping minds: The neural fingerprint of team flow dynamics

Patients support AI as radiologist backup in screening mammography

AACR: MD Anderson’s John Weinstein elected Fellow of the AACR Academy

Existing drug has potential for immune paralysis

[Press-News.org] Differences between 'marathon mice' and 'couch potato mice' reveal key to muscle fitness
MicroRNAs are identified as the missing link between the 2 defining features of muscle fitness -- fuel-burning and fiber-type switching -- providing a potential new target for interventions that boost fitness in people with chronic illness or injury