PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Studies generate comprehensive list of genes required by innate system to defend sex cells

The piRNA pathway protects eggs and sperm from 'jumping genes' that can cause developmental defects, sterility

2013-05-09
(Press-News.org) Cold Spring Harbor, NY – Two teams of investigators led by Professor Gregory Hannon of Cold Spring Harbor Laboratory (CSHL) today publish studies revealing many previously unknown components of an innate system that defends sex cells – the carriers of inheritance across generations – from the ravages of transposable genetic elements.

When activated, these troublesome segments of DNA, also called jumping genes or transposons, can copy and insert themselves at random spots across the chromosomes. In sperm and egg cells the proliferation of transposons can be particularly devastating, causing severe developmental impairments in offspring as well as sterility. Over the eons of evolution, complex organisms have developed means of defending their germline genomes against transposons, principally via a series of mechanisms that scientists call the piRNA pathway.

In animals, this pathway involves a family of proteins – called Piwi proteins – that combine with a variety of small RNA molecules called Piwi-interacting RNAs, or piRNAs. Since the discovery of piRNAs in 2006, scientists have been trying to understand how they are created, and how they do the essential job of repressing transposons – which are plentiful although usually inactive throughout the genomes of nearly every species.

Some important players in the piRNA pathway are known, but the majority have remained mysterious. "That's why the two new studies from our lab are important," says Hannon, who is also an Investigator of the Howard Hughes Medical Institute. "We've identified dozens of genes essential for proper function of the piRNA pathway, and have looked at some of them in detail." The work advances knowledge of how the pathway works, and provides others studying it a basis for fleshing out the mechanism in its entirety.

"It's a major step toward our goal of obtaining the blueprints for reconstructing a fully operational piRNA transposon-silencing machinery in the lab," according to Felix Muerdter, a Ph.D. candidate, who joined three other scientists in the Hannon lab -- Drs. Benjamin Czech, Jonathan Preall, and Paloma Guzzardo – in conducting the experiments and co-authoring the new papers.

To be able to assemble the machinery active in repressing transposons will be to understand in unprecedented detail how our cells, more broadly, selectively detect and silence genes. This knowledge promises to play a role in finding new ways to treat complex diseases involving gene dysfunction, ranging from cancer to schizophrenia.

The two Hannon teams performed their experiments in fruit flies, which possess all of the fundamental elements of germline defense that humans do, owing to the phenomenon that biologists call sequence conservation. It is nature's way of preserving life's most essential mechanisms across species.

Two teams, different cell types

The two Hannon lab teams used the same meticulous means of uncovering new piRNA pathway components, albeit in different kinds of cells. Czech, Preall and their group worked with female germ cells; Muerdter and Guzzardo focused on follicle cells, which are found inside the female egg chamber but are derived from somatic cells – the cell type that comprises all of an organism's non-sex cells.

Both groups performed RNA interference (RNAi) screens against large numbers of genes in the cell types they studied. These screens use small RNAs to "knock down" the activity of specific genes. Czech and Preall's group knocked down all 8000 genes expressed in the fly ovary, one at a time. Muerdter and Guzzardo knocked down all 13,900 genes in the fly genome in similar fashion. The purpose of these experiments was to see what happened to transposon levels when single genes were no longer functional.

In both groups, the screens led to the identification of dozens of genes whose absence was shown to impair transposon repression. Both groups later selected one or two genes in their screens whose knock-down had the most potent impact on transposon proliferation. For Muerdter and Guzzardo, repression of a gene they named asterix caused levels of a transposon called gypsy to soar. But how?

How gypsy is repressed

When gypsy DNA is expressed, it begins to generate an RNA "message," a preliminary step in the transposon proliferation process. When the asterix gene was knocked down, this is precisely what happened. "Normally, the Piwi protein, forming a complex with a small RNA, can recognize a sequence on this RNA message," Guzzardo explains. "When the piRNA finds the sequence, it attaches and the process of transcription stops."

The new work makes clear why: attachment of the piRNA to the gypsy message causes histones – proteins that pack gypsy DNA – to take on chemical modifications (called H3K9 trimethylation marks) that tag it as "silent." The DNA cannot be accessed by the gene-expression machinery; gypsy is thus kept in a dormant state.

Without asterix, the tag that renders gypsy silent is absent, and the gypsy gene thus becomes accessible to the machinery in the nucleus that starts to transcribe it. The transposon can now proliferate.

Czech and Preall, doing similar work exclusively in the ovary, found some of the same genes to be active in repressing transposons in those cells, thus making clear that they are components of what can now be called a "core piRNA pathway." In the fly ovary, many more transposons – 80 to 100 – can potentially be activated than in follicle and other somatic cells, in which the corresponding number is around 20 to 30. For this reason, piRNA mechanisms in the female germline cells are more elaborate, and involve more genes and probably more accessory proteins in the transposon repression process, according to Czech.

"Our screens have identified a set of genes involved in transposon suppression in the female ovary of the fly," Czech says. "We're excited to have generated what appears to be a comprehensive list of core components of the piRNA pathway, and hope that this spurs further discovery in other labs. Our next job is to distinguish members of the pathway involved in generating piRNAs from those we call 'effectors,' and ultimately bring to light the molecular mechanisms underlying piRNA biogenesis and effector functions."

INFORMATION:

This research was supported by grants from the U. S. National Institutes of Health (grant 5R01GM062534); T. and V. Stanley; Kathryn W. Davis; HHMI; and The American Cancer Society (award 121614-PF-11-277-01-RMC).

The following papers appear online ahead of print May 9, 2013 in Molecular Cell: "A Transcriptome-wide RNAi Screen in the Drosophila Ovary Reveals Factors of the Germline piRNA Pathway" (authors: Benjamin Czech, Jonathan B. Preall, Jon McGinn and Gregory J. Hannon); and "A Genome-wide RNAi Screen Draws a Genetic Framework for Transposon Control and Primary piRNA Biogenesis in Drosophila" (authors: Felix Muerdter, Paloma M. Guzzardo, Jesse Gillis, Yicheng Luo, Yang Yu, Caifu Chen, Richard Fekete and Gregory J. Hannon).

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 360 scientists strong and its Meetings & Courses program hosts more than 12,500 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit http://www.cshl.edu.

END



ELSE PRESS RELEASES FROM THIS DATE:

Scientists show how nerve wiring self-destructs

2013-05-09
Many medical issues affect nerves, from injuries in car accidents and side effects of chemotherapy to glaucoma and multiple sclerosis. The common theme in these scenarios is destruction of nerve axons, the long wires that transmit signals to other parts of the body, allowing movement, sight and sense of touch, among other vital functions. Now, researchers at Washington University School of Medicine in St. Louis have found a way the body can remove injured axons, identifying a potential target for new drugs that could prevent the inappropriate loss of axons and maintain ...

No holes in Swiss online networking theory

2013-05-09
Often, it's not what you know, but who you know when it comes to business and research success and that still applies even in the age of online social networking, according to results to be published in the International Journal of Organisational Design and Engineering. Peter Gloor, Pierre Dorsaz, Hauke Fuehres and Manfred Vogel of the MIT Center for Collective Intelligence, in Cambridge, Massachusetts have compared the success of startup entrepreneurs and innovators with their activity on the social networking sites LinkedIn and Facebook as well as email networks including ...

Toddlers from socially-deprived homes most at risk of scalds, study finds

2013-05-09
Toddlers living in socially-deprived areas are at the greatest risk of suffering a scald in the home, researchers at The University of Nottingham have found. The study, published in the journal Burns, showed that boys aged between one and two years old and those with multiple siblings were statistically more likely to suffer a hot water-related injury, while children born to mothers aged 40 years and over were at less risk than those with teenage mums. The results could help GPs and Health Visitors identify those children most at risk of a scald and prevent injuries ...

Scientists demonstrate pear shaped atomic nuclei

2013-05-09
Scientists at the University of Liverpool have shown that some atomic nuclei can assume the shape of a pear which contributes to our understanding of nuclear structure and the underlying fundamental interactions. Most nuclei that exist naturally are not spherical but have the shape of a rugby ball. While state-of-the-art theories are able to predict this, the same theories have predicted that for some particular combinations of protons and neutrons, nuclei can also assume very asymmetric shapes, like a pear where there is more mass at one end of the nucleus than the ...

Scientists develop device for portable, ultra-precise clocks and quantum sensors

2013-05-09
In a joint project between the Universities of Strathclyde and Glasgow, Imperial College London and the National Physical Laboratory, researchers have developed a portable way to produce ultracold atoms for quantum technology and quantum information processing. Their research has been published in the journal Nature Nanotechnology, where it is featured on the front cover. Many of the most accurate measurement devices, including atomic clocks, work by observing how atoms transfer between individual quantum states. The highest precision is obtained with long observation ...

Study finds brain system for emotional self-control

2013-05-09
Different brain areas are activated when we choose to suppress an emotion, compared to when we are instructed to inhibit an emotion, according a new study from the UCL Institute of Cognitive Neuroscience and Ghent University. In this study, published in Brain Structure and Function, the researchers scanned the brains of healthy participants and found that key brain systems were activated when choosing for oneself to suppress an emotion. They had previously linked this brain area to deciding to inhibit movement. "This result shows that emotional self-control involves ...

Research reveals cancer-suppressing protein 'multitasks'

2013-05-09
The understanding of how a powerful protein called p53 protects against cancer development has been upended by a discovery by Walter and Eliza Hall Institute researchers. More than half of human cancers carry defects in the gene for p53, and almost all other cancers, with a normal p53 gene, carry other defects that somehow impair the function of the p53 protein. Inherited mutations in the p53 gene put people at a very high risk of developing a range of cancers. The p53 protein's functions are normally stimulated by potentially cancer-causing events, such as DNA damage ...

Study finds link between sexual harassment and 'purging' -- in men

2013-05-09
EAST LANSING, Mich. — Men who experience high levels of sexual harassment are much more likely than women to induce vomiting and take laxatives and diuretics in an attempt to control their weight, according to a surprising finding by Michigan State University researchers. Their study is one of the first to examine the effects of sexual harassment on body image and eating behaviors in both women and men. As expected, women reported more sexual harassment and greater overall weight and shape concerns and disordered eating behavior (such as binge eating) in response to that ...

Power plants: UGA researchers explore how to harvest electricity directly from plants

2013-05-09
Athens, Ga. – The sun provides the most abundant source of energy on the planet. However, only a tiny fraction of the solar radiation on Earth is converted into useful energy. To help solve this problem, researchers at the University of Georgia looked to nature for inspiration, and they are now developing a new technology that makes it possible to use plants to generate electricity. "Clean energy is the need of the century," said Ramaraja Ramasamy, assistant professor in the UGA College of Engineering and the corresponding author of a paper describing the process in ...

New method for the early detection of vineyard mildew, powdery mildew and botrytis

2013-05-09
The Basque Institute for Agricultural Research and Development, Neiker-Tecnalia, has developed a new method for the early detection of the diseases mildew, powdery mildew and botrytis in vines. The new methodology based on molecular biology techniques makes it possible to detect the disease before the symptoms appear on the plant. That way it is possible to carry out the rapid treatment of the plots or areas affected and prevent the disease from spreading all over vineyard, which reduces infective pressure. The R&D centre has also studied the evolution of infection by the ...

LAST 30 PRESS RELEASES:

UTokyo and NARO develop new vertical seed distribution trait for soybean breeding

Research into UK’s use of plastic packaging finds households ‘wishcycle’ rather than recycle – risking vast contamination

Vaccine shows promise against aggressive breast cancer

Adverse events affect over 1 in 3 surgery patients, US study finds

Outsourcing adult social care has contributed to England’s care crisis, argue experts

The Lancet: Over 800 million adults living with diabetes, more than half not receiving treatment, global study suggests

New therapeutic approach for severe COVID-19: faster recovery and reduction in mortality

Plugged wells and reduced injection lower induced earthquake rates in Oklahoma

Yin selected as a 2024 American Society of Agronomy Fellow

Long Covid could cost the economy billions every year

Bluetooth technology unlocks urban animal secrets

This nifty AI tool helps neurosurgeons find sneaky cancer cells

Treatment advances, predictive biomarkers stand to improve bladder cancer care

NYC's ride-hailing fee failed to ease Manhattan traffic, new NYU Tandon study reveals

Meteorite contains evidence of liquid water on Mars 742 million years ago

Self-reported screening helped reduce distressing symptoms for pediatric patients with cancer

Which risk factors are linked to having a severe stroke?

Opening borders for workers: Abe’s profound influence on Japan’s immigration regime

How skills from hospitality and tourism can propel careers beyond the industry

Research shows managers of firms handling recalls should review media scrutiny before deciding whether to lobby

New model system for the development of potential active substances used in condensate modifying drugs

How to reduce social media stress by leaning in instead of logging off

Pioneering research shows sea life will struggle to survive future global warming

In 10 seconds, an AI model detects cancerous brain tumor often missed during surgery 

Burden of RSV–associated hospitalizations in US adults, October 2016 to September 2023

Repurposing semaglutide and liraglutide for alcohol use disorder

IPK-led research team provides insights into the pangenome of barley

New route to fluorochemicals: fluorspar activated in water under mild conditions

Microbial load can influence disease associations

Three galactic “red monsters” in the early Universe

[Press-News.org] Studies generate comprehensive list of genes required by innate system to defend sex cells
The piRNA pathway protects eggs and sperm from 'jumping genes' that can cause developmental defects, sterility