PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Can math models of gaming strategies be used to detect terrorism networks?

2013-05-17
(Press-News.org) Philadelphia, PA— The answer is yes, according to a paper in the SIAM Journal on Discrete Mathematics.

In a paper published in the journal last month, authors Anthony Bonato, Dieter Mitsche, and Pawel Pralat describe a mathematical model to disrupt flow of information in a complex real-world network, such as a terrorist organization, using minimal resources.

Terror networks are comparable in their structure to hierarchical organization in companies and certain online social networks, where information flows in one direction from a source, which produces the information or data, downwards to sinks, which consume it. Such networks are called hierarchical social networks.

"In such networks, the flow of information is often one way," explains author Pawel Pralat. "For example, a celebrity such as Justin Bieber sends out a tweet, which is sent to millions of his followers. These followers send out their own retweets, and so on. We may therefore view hierarchical social networks as directed networks without cycles, or directed acyclic graphs (DAGs)."

Here, there is no requirement for reciprocity (the celebrity does not necessarily follow his or her followers). Similarly, in a terrorist network, the leaders pass plans down to the foot soldiers, and usually only one messenger needs to receive the message for the plan to be executed.

Disruption of the flow of information would correspond to halting the spread of news in an online social network or intercepting messages in a terror network.

The authors propose a generalized stochastic model for the flow and disruption of information based on a two-player outdoor game called "Seepage," where players who depict agents attempt to block the movement of another player, an intruder, from a source node to a sink. "The game—motivated by the 1973 eruption of the Eldfell volcano in Iceland—displays some similarities to an approach used in mathematical counterterrorism, where special kinds of DAGs are used to model the disruption of terrorist cells," says Pralat.

The motivating eruption caused a major crisis at the time, as lava flow threatened to close off the harbor, the island's main source of income. In the game, inhabitants attempt to protect the harbor by pouring water on the volcanic lava to halt its progress. A mathematical model of the game pits two opponents against each other—the sludge, or intruder, against the greens, or agents— forming a directed acyclic graph, with one source (the top of the volcano) and many sinks representing the lake. The parameter, "seepage," represents the amount of contamination, and the "green number" corresponds to the number of agents required to halt it.

A previous study modeled terrorist cells as partially ordered sets (a special kind of DAG), which are often used in mathematics to analyze an ordering, sequencing, or arrangement of distinct objects. In such a system, terrorist plans are formulated by nodes at the top of the hierarchy, which represent the leaders or maximal nodes of the set. The plans are transmitted down to the nodes at the bottom: these represent foot soldiers in a terror network or minimal nodes in the set who would be presumed to carry out these plans. The assumption is that one messenger is sufficient for reception and execution of the plan. Thus, if the partially ordered set represents a courier network for a terrorist organization, the intention would be to block all routes from the maximal node to the minimal nodes by capturing or killing a subset of agents.

In this paper, the authors utilize the similarities in the previous terrorist cell model to Seepage, where greens try to prevent the sludge from moving to the sinks by blocking nodes. A number of different winning strategies employed by both players are explored when played on a DAG. The seepage and green number for disrupting a given hierarchical social network are analyzed.

The primary difference from the previous study's model is that the Seepage model is dynamic: greens can move and choose new sets of nodes over time. The authors determine that Seepage is a more realistic model of counterterrorism, as the agents do not necessarily act all at once, but over time.

The analysis is made in two types of terrorist network structures, as Pralat explains, "We consider two extreme profiles: one where the network is regular, where every agent has about the same number of connections. The second profile is power law, where some agents have many connections, but most have very few." This is analyzed by considering the total degree distribution of nodes in the DAG. In regular DAGs, each level of the DAG would have nodes with about the same out-degree (number of outgoing edges emanating from a node), while power law DAGs would have many more low-degree nodes and a few with high degrees.

Mathematical analysis allows the authors to determine what point in a network would be most effective for disrupting messages. "Our mathematical results reinforce the view that intercepting the information or message in a hierarchical social network following a power law is more difficult close to levels near the source. For regular networks, it does not matter as much where the message is disrupted," says Pralat. "Future work could look at more complex profiles of networks, along with developing effective algorithms for disrupting the flow of information in a DAG using our game-theoretic approach."

### Source Article: Vertex-Pursuit in Random Directed Acyclic Graphs
Anthony Bonato, Dieter Mitsche and Pawel Pralat
SIAM Journal on Discrete Mathematics, 27(2), 732–756. (Online publish date: April 16, 2013).
URL: http://epubs.siam.org/doi/abs/10.1137/120866932
The source article is available for free access at the link above until August 16, 2013.

About the authors: Anthony Bonato is a professor and Chair of the Department of Mathematics at Ryerson University in Toronto, Canada. Dieter Mitsche is a postdoctoral fellow and Pawel Pralat is an assistant professor in the Department of Mathematics at Ryerson University. This work was supported by NSERC, Mprime and Ryerson University.

About SIAM The Society for Industrial and Applied Mathematics (SIAM), headquartered in Philadelphia, Pennsylvania, is an international society of over 14,000 individual members, including applied and computational mathematicians and computer scientists, as well as other scientists and engineers. Members from 85 countries are researchers, educators, students, and practitioners in industry, government, laboratories, and academia. The Society, which also includes nearly 500 academic and corporate institutional members, serves and advances the disciplines of applied mathematics and computational science by publishing a variety of books and prestigious peer-reviewed research journals, by conducting conferences, and by hosting activity groups in various areas of mathematics. SIAM provides many opportunities for students including regional sections and student chapters. Further information is available at http://www.siam.org. [Reporters are free to use this text as long as they acknowledge SIAM]


ELSE PRESS RELEASES FROM THIS DATE:

Gene involved in neurodegeneration keeps clock running

2013-05-17
Northwestern University scientists have shown a gene involved in neurodegenerative disease also plays a critical role in the proper function of the circadian clock. In a study of the common fruit fly, the researchers found the gene, called Ataxin-2, keeps the clock responsible for sleeping and waking on a 24-hour rhythm. Without the gene, the rhythm of the fruit fly's sleep-wake cycle is disturbed, making waking up on a regular schedule difficult for the fly. The discovery is particularly interesting because mutations in the human Ataxin-2 gene are known to cause ...

Body mass index of low income African-Americans linked to proximity of fast food restaurants

2013-05-17
HOUSTON ­­– African-American adults living closer to a fast food restaurant had a higher body mass index (BMI) than those who lived further away from fast food, according to researchers at The University of Texas MD Anderson Cancer Center, and this association was particularly strong among those with a lower income. A new study published online in the American Journal of Public Health indicates higher BMI associates with residential proximity to a fast food restaurant, and among lower-income African-Americans, the density, or number, of fast food restaurants within two ...

Research into carbon storage in Arctic tundra reveals unexpected insight into ecosystem resiliency

2013-05-17
(Santa Barbara, Calif.) –– When UC Santa Barbara doctoral student Seeta Sistla and her adviser, environmental studies professor Josh Schimel, went north not long ago to study how long-term warming in the Arctic affects carbon storage, they had made certain assumptions. "We expected that because of the long-term warming, we would have lost carbon stored in the soil to the atmosphere," said Schimel. The gradual warming, he explained, would accelerate decomposition on the upper layers of what would have previously been frozen or near-frozen earth, releasing the greenhouse ...

Bach to the blues, our emotions match music to colors

2013-05-17
Whether we're listening to Bach or the blues, our brains are wired to make music-color connections depending on how the melodies make us feel, according to new research from the University of California, Berkeley. For instance, Mozart's jaunty Flute Concerto No. 1 in G major is most often associated with bright yellow and orange, whereas his dour Requiem in D minor is more likely to be linked to dark, bluish gray. Moreover, people in both the United States and Mexico linked the same pieces of classical orchestral music with the same colors. This suggests that humans ...

Healthy companies and healthy regions: Connecting the dots

2013-05-17
In today's virtual world, it's easy to downplay the significance of place. Yet when it comes to regional prosperity, geography matters. Income and job growth is not random but rather spill over from one region to another, meaning that merely being next to a prosperous region will make your own economy more vibrant. This may sound like a no-brainer, but until recently it's been hard to prove from a statistical perspective. Yet by using new models that factor in location and blending microeconomic ideas with macro ones, researchers at the Edward Lowe Foundation's Institute ...

Add boron for better batteries

2013-05-17
Frustration led to revelation when Rice University scientists determined how graphene might be made useful for high-capacity batteries. Calculations by the Rice lab of theoretical physicist Boris Yakobson found a graphene/boron anode should be able to hold a lot of lithium and perform at a proper voltage for use in lithium-ion batteries. The discovery appears in the American Chemical Society's Journal of Physical Chemistry Letters. The possibilities offered by graphene get clearer by the day as labs around the world grow and test the one-atom-thick form of carbon. Because ...

UT Arlington physicist's tool has potential for brain mapping

2013-05-17
A new tool being developed by UT Arlington assistant professor of physics could help scientists map and track the interactions between neurons inside different areas of the brain. The journal Optics Letters recently published a paper by Samarendra Mohanty on the development of a fiber-optic, two-photon, optogenetic stimulator and its use on human cells in a laboratory. The tiny tool builds on Mohanty's previous discovery that near-infrared light can be used to stimulate a light-sensitive protein introduced into living cells and neurons in the brain. This new method could ...

70's-era physics prediction finally confirmed

2013-05-17
City College of New York Assistant Professor of Physics Cory Dean, who recently arrived from Columbia University where he was a post-doctoral researcher, and research teams from Columbia and three other institutions have definitively proven the existence of an effect known as Hofstadter's Butterfly. The phenomenon, a complex pattern of the energy states of electrons that resembles a butterfly, has appeared in physics textbooks as a theoretical concept of quantum mechanics for nearly 40 years. However, it had never been directly observed until now. Confirming its existence ...

New method proposed for detecting gravitational waves from ends of universe

2013-05-17
RENO, Nev. – A new window into the nature of the universe may be possible with a device proposed by scientists at the University of Nevada, Reno and Stanford University that would detect elusive gravity waves from the other end of the cosmos. Their paper describing the device and process was published in the prestigious physics journal Physical Review Letters. "Gravitational waves represent one of the missing pieces of Einstein's theory of general relativity," Andrew Geraci, University of Nevada, Reno physics assistant professor, said. "While there is a global effort ...

NASA satellite data helps pinpoint glaciers' role in sea level rise

2013-05-17
A new study of glaciers worldwide using observations from two NASA satellites has helped resolve differences in estimates of how fast glaciers are disappearing and contributing to sea level rise. The new research found glaciers outside of the Greenland and Antarctic ice sheets, repositories of 1 percent of all land ice, lost an average of 571 trillion pounds (259 trillion kilograms) of mass every year during the six-year study period, making the oceans rise 0.03 inches (0.7 mm) per year. This is equal to about 30 percent of the total observed global sea level rise during ...

LAST 30 PRESS RELEASES:

Climate change driving ‘cost-of-living' squeeze in lizards

Stem Cell Reports seeks applications for its Early Career Scientist Editorial Board

‘Brand new physics’ for next generation spintronics

Pacific Islander teens assert identity through language

White House honors Tufts economist

Sharp drop in mortality after 41 weeks of pregnancy

Flexible electronics integrated with paper-thin structure for use in space

Immune complex shaves stem cells to protect against cancer

In the Northeast, 50% of adult ticks carry Lyme disease carrying bacteria

U of A Cancer Center clinical trial advances research in treatment of biliary tract cancers

Highlighting the dangers of restricting discussions of structural racism

NYU Tandon School of Engineering receives nearly $10 million from National Telecommunications and Information Administration

NASA scientists find new human-caused shifts in global water cycle

This tiny galaxy is answering some big questions

Large and small galaxies may grow in ways more similar than expected

The ins and outs of quinone carbon capture

Laboratory for Laser Energetics at the University of Rochester launches IFE-STAR ecosystem and workforce development initiatives

Most advanced artificial touch for brain-controlled bionic hand

Compounding drought and climate effects disrupt soil water dynamics in grasslands

Multiyear “megadroughts” becoming longer and more severe under climate change

Australopithecines at South African cave site were not eating substantial amounts of meat

An AI model developed to design proteins simulates 500 million years of protein evolution in developing new fluorescent protein

Fine-tuned brain-computer interface makes prosthetic limbs feel more real

New chainmail-like material could be the future of armor

The megadroughts are upon us

Eavesdropping on organs: Immune system controls blood sugar levels

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors

New study reveals how climate change may alter hydrology of grassland ecosystems

Polymer research shows potential replacement for common superglues with a reusable and biodegradable alternative 

Research team receives $1.5 million to study neurological disorders linked to long COVID

[Press-News.org] Can math models of gaming strategies be used to detect terrorism networks?