PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Protein preps cells to survive stress of cancer growth and chemotherapy

Surprising findings by Salk researchers offer hope that therapy now being tested in advanced cancer could halt progression of premalignant cells

2013-05-23
(Press-News.org) LA JOLLA, CA---Scientists have uncovered a survival mechanism that occurs in breast cells that have just turned premalignant-cells on the cusp between normalcy and cancers-which may lead to new methods of stopping tumors.

In their Molecular Cell study, the Salk Institute researchers report that a protein known as transforming growth factor beta (TGF-β), considered a tumor suppressor in early cancer development, can actually promote cancer once a cell drifts into a pre-cancerous state.

The discovery-a surprise to the investigators-raises the tantalizing possibility that, with novel treatment, some cancers might be prevented before they even develop.

"Our work suggests it might be possible to halt cancer development in premalignant cells-those that are just a few divisions away from being normal," says the study's lead author, Fernando Lopez-Diaz, a researcher in the Regulatory Biology Laboratory at Salk.

Agents designed to inhibit TGF-β are already being tested against cancers that have already spread, says Beverly M. Emerson, a Salk professor, head of the lab and the study's senior author. "This study offers both significant insights into early cancer development and a new direction to explore in cancer treatment," she says. "It would be fantastic if a single agent could shut down both advanced cancer and cancer that is primed to develop."

Oncologists might also be able to use their discovery to predict whether premalignant cells in a patient are destined to become full-fledged cancer, Emerson adds. "Not all premalignant cells morph into cancer," she says. "Many self-destruct due to cellular protective mechanisms. But some will become tumors and, at this point, there is no way to predict which of these cells are a risk."

The two faces of TGF-β

TGF-β molecules are secreted proteins found in most human tissues. They play a number of different biological roles, including controlling cell proliferation and inflammation and assisting in wound healing.

The prevailing dogma in cancer research is that TGF-β signaling keep cells from morphing into cancer, says Lopez-Diaz. Scientists also recognized that cancer cells that "want" to spread learn how to use TGF-β wound-healing function to break from a tumor, he says.

Another protein, P53 is a known tumor suppressor. During the stress response that occurs as a cell becomes cancerous, and in response to chemotherapy, p53 attempts to repair DNA damage that has occurred, and, if not successful, p53 orders the cell to die. "The p53 pathway must be sabotaged for cells to become cancerous," Lopez-Diaz says. "This happens when its gene becomes mutated, if the p53 protein is exaggeratedly degraded or, less appreciated, if p53 biosynthesis is impeded."

The researchers conducted this study to learn exactly how p53 and TGF-β interact in cancer development. "For the past decade, everyone has believed that these two pathways work together in normal and premalignant cells to stop cancer, even though there was not much data to support this assumption," he says.

The team examined premalignant as well as cancer cells from breast and lung tumors and matched normal and premalignant breast cells from healthy women provided by scientists at the University of California San Francisco.

But no matter how many different ways they did their experiments, the Salk researchers found that TGF-β can interfere with cells' damage responses in premalignant or cancer cells.

In fact, they found that TGF-β halts both the transcription of the p53 gene-the process by which cellular machinery reads the DNA code for a gene-and the subsequent process by which the corresponding p53 protein is produced, known as translation.

This could explain why, in about half of the breast tumors, including premalignant lesions, that the team studied at both UC San Francisco and at Sanford Burnham Medical Research Institute, when TGF-β1 signaling was highly activated, the levels of p53 were reduced, and vice versa-if the TGF-β1 pathway was reduced, there were high levels of p53. " A similar trend was seen with PUMA, a protein which induces cell death," Fernando Lopez-Diaz adds. "There was rather abundant PUMA protein when little TGF-β1 activation existed and vice versa."

"The bad face of TGF-β emerged within just a few cell divisions away from normality, allowing cells to avoid death," he says.

Filling in the cancer puzzle

This newfound immortality explains many oncologic mysteries, Lopez-Diaz says. "One is that it sheds light on how premalignant and early cancer cells are able to withstand the assault of chemotherapy and other treatments," he says.

It may explain why 77 percent of breast cancers have a normal p53 gene, and it further suggests a way that cancer cells can use both to metastasize and survive the journey to organs where they set up a new home.

"Because it helps cells avoid death, TGF-β can reduce the negative impact that the metastatic process has in the cancer cells," Lopez-Diaz says.

He adds that there is much work yet to do. "We want to understand the signals that turn TGF-β into a bad guy," he says. "If we know that, we might be able to inhibit those signals, and force damaged cells to die, as they should. That may offer us another treatment possibility, along with TGF-β inhibitors now being tested."



INFORMATION:



Other authors of the study are Sri Kripa Balakrishnan, from Salk; Philippe Gascard, Jianxin Zhao, and Thea D. Tlsty, from the University of California San Francisco; and Sonia V. del Rincon and Charles Spruck, from Sanford Burnham Medical Research Institute.

The study was funded by grants from the National Cancer Institute (U54CA143803), the Chambers Medical Foundation and a Cancer Center Grant (P30 CA014195).

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.



ELSE PRESS RELEASES FROM THIS DATE:

UBC engineer helps pioneer flat spray-on optical lens

2013-05-23
A University of British Columbia engineer and a team of U.S. researchers have made a breakthrough utilizing spray-on technology that could revolutionize the way optical lenses are made and used. Kenneth Chau, an assistant professor in the School of Engineering at UBC's Okanagan campus, is a key investigator among colleagues at the National Institute of Standards and Technology in Maryland. Their work – the development of a flat lens – is published in the May 23 issue of the journal Nature. Nearly all lenses – whether in an eye, a camera, or a microscope – are presently ...

Hormone signal drives motor neuron growth, fish study shows

2013-05-23
A discovery made in fish could aid research into motor neuron disease. Scientists have found that a key hormone allows young zebrafish to develop and replace their motor neurons – a kind of nerve cell found in the spinal cord. The discovery may aid efforts to create neurons from stem cells in the lab, and support further research into a disorder for which there is still no cure. In humans, motor neurons control important muscle activities such as speaking, walking and breathing. When these cells stop working, it causes difficulties in motor functions and leads ...

Second-generation TAVI device -- Lotus Valve -- shows good performance in REPRISE II

2013-05-23
22 May 2013, Paris, France: The Lotus Valve, a second-generation transcatheter aortic valve implantation (TAVI) device, was successfully implanted in all of the first 60 patients in results from REPRISE II reported at EuroPCR 2013, which showed good device performance and low mortality at 30 days. "First generation TAVI devices provide significant clinical benefit, but there are opportunities for improvement," explained lead author Ian Meredith, Director of MonashHeart, Southern Health and Professor of Medicine, Monash University, Melbourne, Australia. He suggested that ...

Milwaukee-York researchers forward quest for quantum computing

2013-05-23
Research teams from UW-Milwaukee and the University of York investigating the properties of ultra-thin films of new materials are helping bring quantum computing one step closer to reality. An on-going collaboration between physicists from York and the University of Wisconsin, Milwaukee, USA, is focusing on understanding, tailoring and tuning the electronic properties of topological insulators (TI) - new materials with surfaces that host a quantum state of matter – at the nanoscale. Understanding the properties of thin films of the new materials and integrating them with ...

Breakthrough on Huntington's disease

2013-05-23
Researchers at Lund University have succeeded in preventing very early symptoms of Huntington's disease, depression and anxiety, by deactivating the mutated huntingtin protein in the brains of mice. "We are the first to show that it is possible to prevent the depression symptoms of Huntington's disease by deactivating the diseased protein in nerve cell populations in the hypothalamus in the brain. This is hugely exciting and bears out our previous hypotheses", explains Åsa Petersén, Associate Professor of Neuroscience at Lund University. Huntington's is a debilitating ...

Researchers suggest boosting body's natural flu killers

2013-05-23
Jerusalem, May 13, 2013 – A known difficulty in fighting influenza (flu) is the ability of the flu viruses to mutate and thus evade various medications that were previously found to be effective. Researchers at the Hebrew University of Jerusalem have shown recently that another, more promising, approach is to focus on improving drugs that boost the body's natural flu killer system. Emergence of new influenza strains, such as the recent avian influenza (H5N1) and swine influenza (H1N1 2009), can lead to the emergence of severe pandemics that pose a major threat to the ...

Biochemistry: Unspooling DNA from nucleosomal disks

2013-05-23
The tight wrapping of genomic DNA around nucleosomes in the cell nucleus makes it unavailable for gene expression. A team of Ludwig-Maximilians-Universitaet (LMU) in Munich now describes a mechanism that allows chromosomal DNA to be locally displaced from nucleosomes for transcription. In higher organisms the genomic DNA is stored in the cell nucleus, wrapped around disk-shaped particles called nucleosomes, each consisting of two pairs of four different histone proteins and accommodating two loops of DNA. Packed in this way to form chromatin, the DNA is protected, but ...

Anxious men fare worse during job interviews, study finds

2013-05-23
Nervous about that upcoming job interview? You might want to take steps to reduce your jitters, especially if you are a man. People who are anxious perform more poorly in job interviews, and the effect is worse for men than women, according to new research from the University of Guelph. "Most job applicants experience interview anxiety prior to and during interviews," said psychology professor Deborah Powell, who conducted the study with PhD student Amanda Feiler. Anxiety often shows up as nervous tics, difficulty speaking and trouble coming up with answers, all of ...

Regenerating spinal cord fibers may be treatment for stroke-related disabilities

2013-05-23
DETROIT – A study by researchers at Henry Ford Hospital found "substantial evidence" that a regenerative process involving damaged nerve fibers in the spinal cord could hold the key to better functional recovery by most stroke victims. The findings may offer new hope to those who suffer stroke, the leading cause of long-term disability in adults. Although most stroke victims recover some ability to voluntarily use their hands and other body parts, about half are left with weakness on one side of their bodies, while a substantial number are permanently disabled. The study ...

The secret lives, and deaths, of neurons

2013-05-23
CHAPEL HILL, N.C. – As the human body fine-tunes its neurological wiring, nerve cells often must fix a faulty connection by amputating an axon — the "business end" of the neuron that sends electrical impulses to tissues or other neurons. It is a dance with death, however, because the molecular poison the neuron deploys to sever an axon could, if uncontained, kill the entire cell. Researchers from the University of North Carolina School of Medicine have uncovered some surprising insights about the process of axon amputation, or "pruning," in a study published May 21 in ...

LAST 30 PRESS RELEASES:

Previous experience affects family planning decisions of people with hereditary dementia

Does obesity affect children’s likelihood of survival after being diagnosed with cancer?

Understanding bias and discrimination in AI: Why sociolinguistics holds the key to better Large Language Models and a fairer world 

Safe and energy-efficient quasi-solid battery for electric vehicles and devices

Financial incentives found to help people quit smoking, including during pregnancy

Rewards and financial incentives successfully help people to give up smoking

HKU ecologists reveal key genetic insights for the conservation of iconic cockatoo species

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

[Press-News.org] Protein preps cells to survive stress of cancer growth and chemotherapy
Surprising findings by Salk researchers offer hope that therapy now being tested in advanced cancer could halt progression of premalignant cells