(Press-News.org) From Virginia to Florida, there is a prehistoric shoreline that, in some parts, rests more than 280 feet above modern sea level. The shoreline was carved by waves more than 3 million years ago—possible evidence of a once higher sea level, triggered by ice-sheet melting. But new findings by a team of researchers, including Robert Moucha, assistant professor of Earth Sciences in Syracuse University's College of Arts and Sciences, reveal that the shoreline has been uplifted by more than 210 feet, meaning less ice melted than expected.
Equally compelling is the fact that the shoreline is not flat, as it should be, but is distorted, reflecting the pushing motion of the Earth's mantle.
This is big news, says Moucha, for scientists who use the coastline to predict future sea-level rise. It's also a cautionary tale for those who rely almost exclusively on cycles of glacial advance and retreat to study sea-level changes.
"Three million years ago, the average global temperature was two to three degrees Celsius higher, while the amount of carbon dioxide in the atmosphere was comparable to that of today," says Moucha, who contributed to a paper on the subject in the May 15th issue of Science Express. "If we can estimate the height of the sea from 3 million years ago, we can then relate it to the amount of ice sheets that melted. This period also serves as a window into what we may expect in the future."
Moucha and his colleagues—led by David Rowley, professor of geophysical sciences at the University of Chicago—have been using computer modeling to pinpoint exactly what melted during this interglacial period, some 3 million years ago. So far, evidenced is stacked in favor of Greenland, West Antarctica, and the sprawling East Antarctica ice sheet, but the new shoreline uplift implies that East Antarctica may have melted some or not at all. "It's less than previous estimates had implied," says Rowley, the article's lead author.
Moucha's findings show that the jagged shoreline may have been caused by the interplay between the Earth's surface and its mantle—a process known as dynamic topography. Advanced modeling suggests that the shoreline, referred to as the Orangeburg Scarp, may have shifted as much as 196 feet. Modeling also accounts for other effects, such as the buildup of offshore sediments and glacial retreats.
"Dynamic topography is a very important contributor to Earth's surface evolution," says Rowley. "With this work, we can demonstrate that even small-scale features, long considered outside the realm of mantle influence, are reflective of mantle contributions."
Moucha's involvement with the project grew out of a series of papers he published as a postdoctoral fellow at the Canadian Institute for Advance Research in Montreal. In one paper from 2008, he drew on elements of the North American East Coast and African West Coast to build a case against the existence of stable continental platforms.
"The North American East Coast has always been thought of as a passive margin," says Moucha, referring to large areas usually bereft of tectonic activity. "[With Rowley], we've challenged the traditional view of passive margins by showing that through observations and numerical simulations, they are subject to long-term deformation, in response to mantle flow."
Central to Moucha's argument is the fact that viscous mantle flows everywhere, all the time. As a result, it's nearly impossible to find what he calls "stable reference points" on the Earth's surface to accurately measure global sea-level rise. "If one incorrectly assumed that a particular margin is a stable reference frame when, in actuality, it has subsided, his or her assumption would lead to a sea-level rise and, ultimately, to an increase in ice-sheet melt," says Moucha, who joined SU's faculty in 2011.
Another consideration is the size of the ice sheet. Between periods of glacial activity (such as the one from 3 million years ago and the one we are in now), ice sheets are generally smaller. Jerry Mitrovica, professor of geophysics at Harvard University who also contributed to the paper, says the same mantle processes that drive plate tectonics also deform elevations of ancient shorelines. "You can't ignore this, or your estimate of the size of the ancient ice sheets will be wrong," he says.
Moucha puts it this way: "Because ice sheets have mass and mass results in gravitational attraction, the sea level actually falls near the melting ice sheet and rises when it's further away. This variability has enabled us to unravel which ice sheet contributed to sea-level rise and how much of [the sheet] melted."
The SU geophysicist credits much of the group's success to state-of-the-art seismic tomography, a geological imaging technique led by Nathan Simmons at California's Lawrence Livermore National Laboratory. "Nathan, who co-authored the paper, provided me with seismic tomography data, from which I used high-performance computing to model mantle flow," says Moucha. "A few million years may have taken us a day to render, but a billion years may have taken several weeks or more."
Moucha and his colleagues hope to apply their East Coast model to the Appalachian Mountains, which are also considered a type of passive geology. Although they have been tectonically quiet for more than 200 million years, the Appalachians are beginning to show signs of wear and tear: rugged peaks, steep slopes, landslides and waterfalls—possible evidence of erosion, triggered by dynamic topography.
"Scientists such as Rob, who produce increasingly accurate models of dynamic topography for the past, are going to be at the front line of this important research area," says Mitrovica.
Adds Rowley: "Rob Moucha has demonstrated that dynamic topography is a very important contributor to Earth's surface evolution. … His study of mantle contributions is appealing on a large number of fronts that I, among others of our collaboration, hope to pursue."
INFORMATION:
Syracuse University professor argues Earth's mantle affects long-term sea-level rise estimates
2013-05-24
ELSE PRESS RELEASES FROM THIS DATE:
H7N9 animal model looks at transmission of H7N9 influenza virus
2013-05-24
Toronto – May 23, 2013 – Embargoed until 2:00 PM – An international team of scientists has proved that the H7N9 influenza virus is efficiently transmitted when animals are in close contact -- defined in the study as touching, coughing and the exchange of bodily fluids.
"This study was designed to give us clues about the transmission of H7N9 which has affected some humans in China," said David Kelvin, PhD, a senior scientist at the Toronto General Research Institute and Professor at the University of Toronto. "The animals used in the study had very mild clinical symptoms ...
University of Illinois biophysicists measure mechanism that determines fate of living cells
2013-05-24
Cells in the human body do not function in isolation. Living cells rely on communication with their environment—neighboring cells and the surrounding matrix—to activate a wide range of cellular functions, including reproduction of new cells, differentiation of stem cells into distinct cell types, cell adhesion, and migration of white blood cells to fight bodily infections. This cellular communication occurs on the molecular level and it is reciprocal: a cell receives cues from and also transmits function-activating cues to its neighbors.
The mechanics of this type of ...
UC Santa Barbara scientists discover cinnamon compounds' potential ability to prevent Alzheimer's
2013-05-24
Cinnamon: Can the red-brown spice with the unmistakable fragrance and variety of uses offer an important benefit? The common baking spice might hold the key to delaying the onset of –– or warding off –– the effects of Alzheimer's disease.
That is, according to Roshni George and Donald Graves, scientists at UC Santa Barbara. The results of their study, "Interaction of Cinnamaldehyde and Epicatechin with Tau: Implications of Beneficial Effects in Modulating Alzheimer's Disease Pathogenesis," appears in the online early edition of the Journal of Alzheimer's Disease, and ...
Ferrets, pigs susceptible to H7N9 avian influenza virus
2013-05-24
Chinese and U.S. scientists have used virus isolated from a person who died from H7N9 avian influenza infection to determine whether the virus could infect and be transmitted between ferrets. Ferrets are often used as a mammalian model in influenza research, and efficient transmission of influenza virus between ferrets can provide clues as to how well the same process might occur in people. The research was supported, in part, by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health.
The researchers dropped H7N9 virus into ...
Reforestation study shows trade-offs between water, carbon and timber
2013-05-24
More than 13,000 ships per year, carrying more than 284 million tons of cargo, transit the Panama Canal each year, generating roughly $1.8 billion dollars in toll fees for the Panama Canal Authority. Each time a ship passes through, more than 55 million gallons of water are used from Gatun Lake, which is also a source of water for the 2 million people living in the isthmus.
However, the advent of very large "super" cargo ships, now more than 20 percent of the ships at sea, has demanded change. The Panama Canal is being expanded to create channels and locks three times ...
New filtration material could make petroleum refining cheaper, more efficient
2013-05-24
A newly synthesized material might provide a dramatically improved method for separating the highest-octane components of gasoline. Measurements at the National Institute of Standards and Technology (NIST) have clarified* why. The research team, which included scientists from NIST and several other universities, has published its findings in the journal Science.*
Created in the laboratory of Jeffrey Long, professor of chemistry at the University of California, Berkeley, the material is a metal-organic framework, or MOF, which can be imagined as a sponge with microscopic ...
Cradle turns smartphone into handheld biosensor
2013-05-24
CHAMPAIGN, Ill. — Researchers and physicians in the field could soon run on-the-spot tests for environmental toxins, medical diagnostics, food safety and more with their smartphones.
University of Illinois at Urbana-Champaign researchers have developed a cradle and app for the iPhone that uses the phone's built-in camera and processing power as a biosensor to detect toxins, proteins, bacteria, viruses and other molecules.
Having such sensitive biosensing capabilities in the field could enable on-the-spot tracking of groundwater contamination, combine the phone's GPS ...
Vaccine blackjack: IL-21 critical to fight against viral infections
2013-05-24
Scientists at Emory Vaccine Center have shown that an immune regulatory molecule called IL-21 is needed for long-lasting antibody responses in mice against viral infections.
The results are published in the Journal of Virology.
"Our findings highlight how IL-21 could be important in the development of antiviral vaccines," says research associate Ata Ur Rasheed Mohammed, PhD, the first author of the paper. The senior author is Rafi Ahmed, PhD, director of the Emory Vaccine Center and a Georgia Research Alliance Eminent Scholar.
The findings could lead scientists designing ...
Scientists discover how rapamycin slows cell growth
2013-05-24
This news release is available in French. University of Montreal researchers have discovered a novel molecular mechanism that can potentially slow the progression of some cancers and other diseases of abnormal growth. In the May 23 edition of the prestigious journal Cell, scientists from the University of Montreal explain how they found that the anti-cancer and anti-proliferative drug rapamycin slows down or prevents cells from dividing.
"Cells normally monitor the availability of nutrients and will slow down or accelerate their growth and division accordingly. A ...
When oxygen is short, EGFR prevents maturation of cancer-fighting miRNAs
2013-05-24
HOUSTON - Even while being dragged to its destruction inside a cell, a cancer-promoting growth factor receptor fires away, sending signals that thwart the development of tumor-suppressing microRNAs (miRNAs) before it's dissolved, researchers reported in an early online publication at Nature.
Under conditions of oxygen starvation often encountered by tumors, the epidermal growth factor receptor (EGFR) gums up the cell's miRNA-processing machinery, an international team led by scientists at The University of Texas MD Anderson Cancer Center discovered.
"So when hypoxia ...