(Press-News.org) WEST LAFAYETTE, Ind. — A mystery of the moon that imperiled astronauts and spacecraft on lunar missions has been solved by a Purdue University-led team of scientists as part of NASA's GRAIL mission.
Large concentrations of mass lurk on the lunar surface hidden like coral reefs beneath the ocean waves - an unseen and devastating hazard. These concentrations change the gravity field and can either pull a spacecraft in or push it off course, sealing its fate to a crash on the face of the moon.
"In 1968 these mass concentrations were an unwelcome discovery as scientists prepared for the Apollo landings, and they have remained a mystery ever since," said Jay Melosh, a member of the Gravity Recovery and Interior Laboratory, or GRAIL, science team who led the research. "GRAIL has now mapped where they lay, and we have a much better understanding of how they developed. If we return to the moon, we can now navigate with great precision."
A better understanding of these features also adds clues to the moon's origin and evolution and will be useful in studying other planets where mass concentrations also are known to exist including Mars and Mercury, said Melosh, who is a distinguished professor of earth, atmospheric and planetary sciences and physics.
"We now know the ancient moon must have been much hotter than it is now and the crust thinner than we thought," he said. "For the first time we can figure out what size asteroids hit the moon by looking at the basins left behind and the gravity signature of the areas. We now have tools to figure out more about the heavy asteroid bombardment and what the ancient Earth may have faced."
The team confirmed the standing theory that the concentrations of mass were caused by massive asteroid impacts billions of years ago and determined how these impacts changed the density of material on the moon's surface and, in turn, its gravity field. A paper detailing the results will be published online by the journal Science on Thursday (May 30).
In addition to Melosh, Purdue team members include Andrew Freed, associate professor of earth, atmospheric and planetary sciences, and graduate students Brandon Johnson and David Blair. Additional team members include Maria Zuber, GRAIL principal investigator and professor at the Massachusetts Institute of Technology; J. Andrews-Hanna of the Colorado School of Mines; S. Solomon of Columbia University; and the GRAIL Science Team.
"The explanation of mascons has eluded scientists for decades," Zuber said. "Since their initial discovery they have also been observed on Mars and Mercury, and by understanding their formation on the moon we have greatly advanced knowledge of how major impacts modified planetary crusts."
The mass concentrations form a target pattern with a gravity surplus at the bulls-eye surrounded by a ring of gravity deficit and an outer ring of gravity surplus. The team found that this pattern arises as a natural consequence of crater excavation, collapse and cooling following an impact.
The team determined that the increase in density and gravitational pull at the bulls-eye was caused by lunar material melted from the heat of the asteroid impact. The melting causes the material to become more concentrated, stronger and denser, and pulls in additional material from the surrounding areas, Melosh said.
The large asteroid impacts also caused big holes into which the surrounding lunar material collapsed. As the cool, strong lunar crust slid into the holes it bent downward, forming a rigid, curved edge that held down the material beneath it and prevented it from fully rebounding to its original surface height. This causes a ring with less gravitational pull because the mass is held farther below the surface, the top of which is what most influences the gravitational signature, he said.
The outer ring of increased gravitational pull comes from the added mass of the material ejected by the initial impact that then piles on top of the lunar surface.
The team combined expertise in specialized computer analysis methods called hydrocodes and finite element codes to create computer simulations that could show the physical changes occurring from microseconds to millions of years. The team analyzed the Freundlich-Sharanov and Humorum mascon basins.
Melosh is a pioneer in adapting computer hydrocodes - computer programs originally created to analyze the flow of liquids - to simulate how complex materials move when high-speed collisions occur, like that of a planetary collision. Hydrocodes can be used to study such phenomena on a time scale of microseconds to hours, but are not practical from time scales much longer than that, he said.
Freed is a leader in adapting finite element codes, like those used to study car crashes, to simulate the changes in density of complex materials upon cooling and the evolution of Earth and other planets on the time scale of hours to millions of years.
Using the GRAIL data set, which offers an unprecedented, detailed map of the distribution of masses in the moon, the team was able to put together a picture of how the moon's crust and mantle behaved and the development of the concentrations of mass in the aftermath of large asteroid impacts.
During their prime and extended missions, the two GRAIL spacecraft transmitted radio signals precisely defining the rate of change of distance between them. The distance between the crafts Ebb and Flow changed slightly as they flew over areas of greater and lesser gravity caused by visible features, such as mountains and craters, and by masses hidden beneath the lunar surface. GRAIL scientists are using this data to learn detailed information about the moon's internal structure and composition.
INFORMATION:
JPL manages the GRAIL mission for NASA's Science Mission Directorate in Washington. The GRAIL mission is part of the Discovery Program managed at NASA's Marshall Space Flight Center in Huntsville, Ala. Lockheed Martin Space Systems in Denver built the spacecraft.
Team solves one of the moon's mysteries
2013-05-31
ELSE PRESS RELEASES FROM THIS DATE:
Smithsonian scientists discover that rainforests take the heat
2013-05-31
South American rainforests thrived during three extreme global warming events in the past, say paleontologists at the Smithsonian Tropical Research Institute in a new report published in the Annual Review of Earth and Planetary Science. No tropical forests in South America currently experience average yearly temperatures of more than 84 degrees Fahrenheit (29 degrees Celsius). But by the end of this century, average global temperatures are likely to rise by another 1 F (0.6 C), leading some scientists to predict the demise of the world's most diverse terrestrial ecosystem. ...
Rounded stones on Mars evidence of flowing water
2013-05-31
Observations by NASA's Mars rover Curiosity have revealed areas with gravel and pebbles that are characteristic of a former riverbed. Researchers, including members of the Niels Bohr Institute, have analysed their shapes and sizes and the rounded pebbles clearly show that there has been flowing water on Mars. The results are published in the scientific journal, Science.
The Mars rover's stereo camera took pictures of a few areas with densely packed pebbles, cemented together like concrete. The image field of an area named Hottah was a mosaic of approximately 1.4 meters ...
Researchers discover new weapon in fight against cervical cancer
2013-05-31
Scientists at the University of Leeds have found a way to target and destroy a key protein associated with the development of cervical and other cancers.
The E7 protein is produced early in the lifecycle of the human papillomavirus (HPV) and blocks the body's natural defences against the uncontrolled division of cells that can lead to cancer.
Researchers at the University of Leeds' School of Molecular and Cellular Biology have synthesised a molecule, called an RNA aptamer, that latches onto the carcinogenic protein and targets it for destruction, significantly reducing ...
Double dose of antiviral drug offers no added benefit in severe influenza
2013-05-31
Giving double doses of the antiviral drug oseltamivir, or Tamiflu, offers no clinical or virological advantages over a standard dose for patients admitted to hospital with severe influenza infection, according to a randomised trial published today and funded by the Wellcome Trust, US National Institute of Allergy and Infectious Diseases and the Singapore National Medical Research Council.
This is the first study to look at the effectiveness of higher doses of oseltamivir in cases of severe flu infection and has implications for global guidelines on clinical management ...
Mars curiosity rover provides strong evidence for flowing water
2013-05-31
Despite satellite images that show vast networks of channels, past Mars rover missions have shown limited evidence for flowing water on Mars.
Now, rocks analyzed by NASA's Mars Curiosity Rover team, including Linda Kah, associate professor of earth and planetary sciences at the University of Tennessee, Knoxville, provide solid evidence that Mars had rivers or streams. This suggests that the environment was drastically different than today's cold and dry conditions, with the potential to support life.
A paper on the team's findings is published in this week's edition ...
Young breast cancer patients often opt for mastectomy
2013-05-31
CHICAGO–A new study of young women with breast cancer has found that most chose to have a mastectomy rather than a surgical procedure that would conserve the breast, researchers will report at the 49th Annual Meeting of the American Society of Clinical Oncology, May 31-June 4, in Chicago.
Shoshana Rosenberg, ScD, of Dana-Farber Cancer Institute and Harvard School of Public Health, and her colleagues evaluated 277 women who were diagnosed with breast cancer at age 40 or younger, who reported having a choice between a mastectomy and a breast conserving lumpectomy, and whose ...
Columbia nursing study finds women less at risk than men for health-care-associated infections
2013-05-31
(NEW YORK, NY, May 30, 2013) – A new study from Columbia University School of Nursing supports a growing body of evidence that women are less likely to contract bloodstream or surgical site infections than their male counterparts.
Researchers investigated the incidence of infection in thousands of hospitalized patients and found the odds for women succumbing to a bloodstream infection (BSI) and surgical-site infection (SSI) were significantly lower than for men. The odds of community-associated BSI were 30% higher in men compared to women, for healthcare-associated ...
Researchers identify novel approach to create red blood cells, platelets in vitro
2013-05-31
(Boston) – A study led by Boston University School of Medicine has identified a novel approach to create an unlimited number of human red blood cells and platelets in vitro. In collaboration with Boston University School of Public Health (BUSPH) and Boston Medical Center (BMC), the researchers differentiated induced pluripotent stem (iPS) cells into these cell types, which are typically obtained through blood donations. This finding could potentially reduce the need for blood donations to treat patients requiring blood transfusions and could help researchers examine novel ...
Researchers gain insight into key protein linked to cancers, neurodegenerative disorders
2013-05-31
Virginia Commonwealth University researchers studying a key molecular player called Hsp70 that is responsible for protein homeostasis have uncovered how it binds together with another molecule responsible for intracellular energy transfer to enhance its overall activity and efficiency – details that have previously not been well understood.
Heat shock proteins, particularly the 70-kilodalton heat shock proteins, Hsp70, are important for cellular processes such as protein folding and protecting cells from stress. It is also involved with protein assembly, degradation and ...
Biologists take snapshot of fleeting protein process
2013-05-31
Structural biologists from Rice University and Baylor College of Medicine (BCM) have captured the first three-dimensional crystalline snapshot of a critical but fleeting process that takes place thousands of times per second in each human cell. The research appears online today in the journal Cell Reports and could prove useful in the study of cancer and other diseases.
The biological "freeze-frame" shows the initial step in the formation of actin, a sturdy strand-like filament that is vital for humans. Actin filaments help cells maintain their shape. The filaments, which ...