(Press-News.org) ST. LOUIS -- In research published in Biochemical and Biophysical Research Communications, Saint Louis University researchers describe a technology that can detect new, previously unknown viruses. The technique offers the potential to screen patients for viruses even when doctors have not identified a particular virus as the likely source of an infection.
In the new approach, scientists use blood serum as a biological source to categorize and discover viruses.
Taking advantage of the complete deciphering of the human genome, SLU researchers used a next-generation sequencing (NGS) approach called transcriptome subtraction. With this process, the research team subtracted the entire human genetic sequence from the genetic material in the blood they were examining. By studying what remained, they were able to identify viral genetic material in the blood.
"We have discovered a technology that allows us to detect new viruses," said Adrian Di Bisceglie, M.D., chairman of the department of internal medicine at Saint Louis University. "We isolate DNA and RNA, amplify the amount of genetic material present in the blood, do ultra-deep sequencing and use an algorithm to search for matches for every known piece of genetic code, both human and for microbes.
"Once we remove the known portions, we're ultimately left with new viruses."
When doctors suspect that a patient has a viral infection, it can be difficult to determine which virus is the culprit.
One way to test for the presence of a virus is to grow it in the lab from a biological sample, like tissue or blood, from the patient. However, that approach won't work if tissue isn't available, if there is no logical starting place for deciding which viruses to screen for (such as knowing that a patient was exposed to a particular virus), or in a "hit and run" viral infection, in which case there is a narrow time frame for tissue sampling.
Another option is to search for viral genetic material in the body.
There are several methods that use this approach (such as immune based-library screening, mass spectrometry and microarray), but the most useful is next-generation sequencing.
After sorting out the human genetic material from the viral material, the research team compared the viral material against database libraries of known viruses. This identifies any known viruses in the blood.
After this second subtraction, researchers examined the remaining, unidentified material, and sorted out bacteria, phages, and viruses, among other material, based on specific protein signatures that mark each type of microorganism. The discovered, previously unknown viruses remain candidates for further investigation.
Key to the research team's success was the discovery of how to amplify the genetic material in the blood, says study researcher Xiaofeng Fan, M.D., associate professor of internal medicine at Saint Louis University.
In the past, blood serum wasn't used to its full potential because RNA degrades too quickly, leaving too little material to study. The amplification process used by the research team eliminated this problem.
The approach that the research team developed has the potential for immediate application in clinical situations concerning an unknown viral infection, like, for example, the recent outbreak of a SARS-like virus in Saudi Arabia.
In addition to offering a way to discover new viruses and test for known viruses in ill patients, this new technology could provide a valuable approach for those in the biodefense field looking for a way to quickly spot existing bio-threats.
Di Bisceglie says this technique will contribute to our understanding of the many viruses that live in the human body.
"Just as the human microbiome project is chronicling the bacteria that live and co-exist in every person, we also are studying the human virome to know more about the viruses that live in all of us. We believe not all are harmful and some may even be beneficial," Di Bisceglie said.
Saint Louis University has applied for patent protection of this technology and will now actively pursue its commercialization.
"Dr. Di Bisceglie is a recognized world leader in virology and we expect scientific companies and commercial enterprises in this field to have strong interest in the new technique," said Graeme Thomas, director of SLU's office of technology management.
INFORMATION:
Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first medical degree west of the Mississippi River. The school educates physicians and biomedical scientists, conducts medical research, and provides health care on a local, national and international level. Research at the school seeks new cures and treatments in five key areas: cancer, liver disease, heart/lung disease, aging and brain disease, and infectious disease.
END
An initiative that combines a multidisciplinary health care approach with a range of preventive measures could cut the rate of a common airway infection among children in intensive care by more than half, a new study suggests. The research, led by a team at Nationwide Children's Hospital, appears in the June issue of the journal Pediatric Critical Care Medicine.
Ventilator-associated tracheobronchitis—VAT for short—is a lower respiratory infection caused by a buildup of bacteria in the airway. Ordinarily, these small organisms are easily cleared, but being on a ventilator ...
NEW YORK (June 17, 2013)—Obese adolescents are more likely than their normal-weight counterparts to have hearing loss, according to results of a new study. Findings showed that obese adolescents had increased hearing loss across all frequencies and were almost twice as likely to have unilateral (one-sided) low-frequency hearing loss. The study was recently e-published by The Laryngoscope, a journal published by the American Laryngological, Rhinological and Otological Society.
"This is the first paper to show that obesity is associated with hearing loss in adolescents," ...
When it comes to confronting childhood obesity, researchers at the Johns Hopkins Bloomberg School of Public Health conclude that community-based approaches are important. A systematic review of childhood obesity prevention programs found that community-based intervention programs that incorporate schools and focus on both diet and physical activity are more effective at preventing obesity in children. The results of the study appear online in Pediatrics.
"In measuring the effectiveness of community-based programs that impact childhood obesity – more comprehensive interventions ...
NEW YORK, NY (June 17, 2013) – A team from the New York Stem Cell Foundation (NYSCF) Research Institute and the Naomi Berrie Diabetes Center of Columbia University has generated patient-specific beta cells, or insulin-producing cells, that accurately reflect the features of maturity-onset diabetes of the young (MODY).
The researchers used skin cells of MODY patients to produce induced pluripotent stem (iPS) cells, from which they then made beta cells. Transplanted into a mouse, the stem cell-derived beta cells secreted insulin in a manner similar to that of the beta ...
LA JOLLA, CA – June 17, 2013 – An international team led by scientists at The Scripps Research Institute (TSRI), the Howard Hughes Medical Institute and Albert Einstein College of Medicine of Yeshiva University has identified a highly promising new anti-tuberculosis compound that attacks the tuberculosis (TB) bacterium in two different ways.
"These findings represent an effort to help solve one of the major global health crises of our time—the resurgence of TB and its dangerous drug-resistant strains," said Peter G. Schultz, the Scripps Family Chair Professor of Chemistry ...
DALLAS – June 17, 2013 – The quality of wakefulness affects how quickly a mammal falls asleep, UT Southwestern Medical Center researchers report in a study that identifies two proteins never before linked to alertness and sleep-wake balance.
"This study supports the idea that subjective sleepiness is influenced by the quality of experiences right before bedtime. Are you reluctantly awake or excited to be awake?" said Dr. Masashi Yanagisawa, professor of molecular genetics and a Howard Hughes Medical Institute investigator at UT Southwestern. He is principal author of ...
TORONTO, June 17, 2013—How kids eat their food may turn out to be just as important as what they eat, according to a new study out of St. Michael's Hospital.
The study, led by Dr. Nav Persaud, a family physician, found a significant association between poor eating habits in kids ages three to five and their levels of non-HDL – or "bad" – cholesterol, putting them at risk for cardiovascular disease later in life.
The paper appeared online in the Canadian Medical Association Journal today.
"We know that eating behaviours are an important determinant of health in ...
Harvard Stem Cell Institute (HSCI) researchers have identified in the most aggressive forms of cancer a gene known to regulate embryonic stem cell self-renewal, beginning a creative search for a drug that can block its activity.
The gene, SALL4, gives stem cells their ability to continue dividing as stem cells rather than becoming mature cells. Typically, cells only express SALL4 during embryonic development, but the gene is re-expressed in nearly all cases of acute myeloid leukemia and 10 to 30 percent of liver, lung, gastric, ovarian, endometrial, and breast cancers, ...
Researchers have found that antibodies against the human papillomavirus (HPV) may help identify individuals who are at greatly increased risk of HPV-related cancer of the oropharynx, which is a portion of the throat that contains the tonsils.
In their study, at least 1 in 3 individuals with oropharyngeal cancer had antibodies to HPV, compared to fewer than 1 in 100 individuals without cancer. When present, these antibodies were detectable many years before the onset of disease. These findings raise the possibility that a blood test might one day be used to identify ...
System 91W appears ripe to become Tropical Depression 4 in the next couple of days as it continues moving north and parallels the east coast of the Philippines. NASA's Aqua satellite captured a visible image of the developing low pressure area as it passed overhead in space on June 17.
On June 16 at 2200 UTC (6 p.m. EDT) System 91W was located near 13.5N and 126.9E, about 355 miles east-southeast of Manila, Philippines.
NASA's Aqua satellite passed over System 91W on June 17 at 05:08 UTC (1:08 a.m. EDT) and the Moderate Resolution Imaging Spectroradiometer (MODIS) ...