(Press-News.org) Osteomyelitis – a debilitating bone infection most frequently caused by Staphylococcus aureus ("staph") bacteria – is particularly challenging to treat.
Now, Vanderbilt microbiologist Eric Skaar, Ph.D., MPH, and colleagues have identified a staph-killing compound that may be an effective treatment for osteomyelitis, and they have developed a new mouse model that will be useful for testing this compound and for generating additional therapeutic strategies.
James Cassat, M.D., Ph.D., a fellow in Pediatric Infectious Diseases who is interested in improving treatments for children with bone infections, led the mouse model studies. Working with colleagues in the Vanderbilt Center for Bone Biology and the Vanderbilt University Institute of Imaging Science, Cassat developed micro-computed tomography (micro-CT) imaging technologies to visualize a surgically introduced bone infection in progress.
"The micro-CT gives excellent resolution images of the damage that's being done to the bone," said Skaar, the Ernest W. Goodpasture Professor of Pathology. "We found that staph is not only destroying bone, but it's also promoting new bone growth. Staph is causing profound changes in bone remodeling."
Cassat also established methods for recovering – and counting – bacteria from the infected bone.
"We're not aware of any other bone infection models where you can pull the bacteria out of a bone and count them in a highly reproducible manner," Skaar said. "From a therapeutic development standpoint, we think this model is going to allow investigators to test new compounds for efficacy against bone infections caused by staph or any other bacteria that cause osteomyelitis."
Several pharmaceutical companies have already approached Skaar and his team about testing compounds in the new bone infection model, which the investigators describe in the June 12 issue of Cell Host & Microbe.
Using the model, the team demonstrated that a certain protein secreted by staph plays a critical role in the pathogenesis of osteomyelitis. Understanding the specific bacterial factors – and the bone cell signals – that promote bone destruction and formation during infection could lead to new strategies for restoring bone balance, Skaar said.
"Even if it's not possible to kill the bacteria, compounds that manipulate bone growth or destruction might have some therapeutic benefit."
Still, Skaar is interested in treatments that will eliminate the infection.
The staph bacteria involved in osteomyelitis and in other persistent infections (such as lung infections in cystic fibrosis) are often a sub-class of staph known as "small colony variants." These staph variants grow slowly and are resistant to entire classes of antibiotics commonly used to treat bone and lung infections, Skaar said.
One way that staph bacteria become antibiotic-resistant small colony variants is by changing the way they generate energy. Instead of using respiration, they switch to fermentation, which blocks antibiotic entry and slows bacterial growth.
In a high-throughput screen for compounds that activate a heme-sensing bacterial pathway, graduate student Laura Mike identified a compound that kills fermenting staph. The findings are reported in the May 14 issue of the Proceedings of the National Academy of Sciences.
"This is a completely new molecular activity," Skaar said. "We don't know of other molecules that are toxic against fermenting bacteria."
The compound – and derivatives synthesized by Gary Sulikowski, Ph.D., and his team – might be useful in treating staph small colony variants, or in preventing their emergence.
The investigators demonstrated in culture that treating staph with the antibiotic gentamicin forced it to become a small colony variant and ferment, and that co-treatment with the new compound prevented resistance and killed all of the bacteria.
"We think a really interesting therapeutic strategy for this compound is that it might augment the antimicrobial activity of existing classes of antibiotics by preventing resistance to them – it might extend the lifetime of these classes of antibiotics," Skaar said.
This would be similar to the drug Augmentin, which combines a traditional penicillin-type antibiotic and a compound that blocks bacterial resistance.
The investigators are excited to test the new compound in the mouse model of osteomyelitis. First, they will treat the mice with gentamicin and assess whether staph small colony variants form. If so, they will co-administer the new compound to test if it prevents resistance, and they will also assess it as a single treatment for the persistent infection.
Skaar stressed that Vanderbilt's collaborative environment made these studies possible. Daniel Perrien, Ph.D., and Florent Elefteriou, Ph.D., in the Vanderbilt Center for Bone Biology and colleagues in the Vanderbilt University Institute of Imaging Science were critical in facilitating development of the bone infection model. Sulikowski and other colleagues in the Vanderbilt Institute of Chemical Biology (VICB) enabled the compound development.
"This is exactly the kind of work the VICB is promoting – getting biologists like me together with chemists, to make new therapeutics," Skaar said.
INFORMATION:
The research was supported by the Searle Scholars Program and grants from the National Institutes of Health (AI069233, AI073843, RR027631, AI091856, HD060554), including the Southeastern Regional Center of Excellence for Emerging Infections and Biodefense (AI057157).
A new model -- and possible treatment -- for staph bone infections
2013-06-20
ELSE PRESS RELEASES FROM THIS DATE:
Dietary fructose causes liver damage in animal model, study finds
2013-06-20
WINSTON-SALEM, N.C. – June 19, 2013 – The role of dietary fructose in the development of obesity and fatty liver diseases remains controversial, with previous studies indicating that the problems resulted from fructose and a diet too high in calories.
However, a new study conducted in an animal model at Wake Forest Baptist Medical Center showed that fructose rapidly caused liver damage even without weight gain. The researchers found that over the six-week study period liver damage more than doubled in the animals fed a high-fructose diet as compared to those in the control ...
Forest Service study finds urban trees removing fine particulate air pollution, saving lives
2013-06-20
SYRACUSE, N.Y., June 19, 2013 –In the first effort to estimate the overall impact of a city's urban forest on concentrations of fine particulate pollution (particulate matter less than 2.5 microns, or PM2.5), a U.S. Forest Service and Davey Institute study found that urban trees and forests are saving an average of one life every year per city. In New York City, trees save an average of eight lives every year.
Fine particulate air pollution has serious health effects, including premature mortality, pulmonary inflammation, accelerated atherosclerosis, and altered cardiac ...
Restoring appropriate movement to immune cells may save seriously burned patients
2013-06-20
Advances in emergency medicine and trauma surgery have had a significant impact on survival of patients in the days immediately after major injuries, including burns. Patients who survive the immediate aftermath of their injuries now are at greatest risk from infections – particularly the overwhelming, life-threatening immune reaction known as sepsis – or from inflammation-induced multiorgan failure. Now, a device developed by Massachusetts General Hospital (MGH) investigators that measures the movement of key immune cells may help determine which patients are at greatest ...
Brain can plan actions toward things the eye doesn't see
2013-06-20
People can plan strategic movements to several different targets at the same time, even when they see far fewer targets than are actually present, according to a new study published in Psychological Science, a journal of the Association for Psychological Science.
A team of researchers at the Brain and Mind Institute at the University of Western Ontario took advantage of a pictorial illusion — known as the "connectedness illusion" — that causes people to underestimate the number of targets they see.
When people act on these targets, however, they can rapidly plan accurate ...
New microfluidic chip can help identify unwanted particles in water and food
2013-06-20
A new process for making a three-dimensional microstructure that can be used in the analysis of cells could prove useful in counterterrorism measures and in water and food safety concerns.
The research, conducted by members of Virginia Tech's Microelectromechanical Systems Laboratory (MEMS) Laboratory in the Bradley Department of Electrical and Computer Engineering, is the focus of a recent article in the Institute of Electrical and Electronic Engineers' Journal of Microelectomechanical Systems.
In their engineering laboratory, the researchers developed a new microfabrication ...
Biological fitness trumps other traits in mating game
2013-06-20
When a new species emerges following adaptive changes to its local environment, the process of choosing a mate can help protect the new species' genetic identity and increase the likelihood of its survival. But of the many observable traits in a potential mate, which particular traits does a female tend to prefer?
A new study from the National Institute for Mathematical and Biological Synthesis finds that a female's mating decisions are largely based on traits that reflect fitness or those that help males perform well under the local ecological conditions.
Males' bright ...
Researchers explain how neural stem cells create new and varied neurons
2013-06-20
EUGENE, Ore. -- (June 19, 2013) – A new study examining the brains of fruit flies reveals a novel stem cell mechanism that may help explain how neurons form in humans. A paper on the study by researchers at the University of Oregon appeared in the online version of the journal Nature in advance of the June 27 publication date.
"The question we confronted was 'How does a single kind of stem cell, like a neural stem cell, make all different kinds of neurons?'" said Chris Doe, a biology professor and co-author on the paper "Combinatorial temporal patterning in progenitors ...
Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel
2013-06-20
LOS ALAMOS, N.M., June 19, 2013—Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production and the subject of new research from Los Alamos National Laboratory (LANL) and the Great Lakes Bioenergy Research Center (GLBRC). Scientists are investigating the unique properties of crystalline cellulose nanofibers to develop novel chemical pretreatments and designer enzymes for biofuel production from cellulosic—or non-food—plant derived biomass.
"Cellulose is laid out in plant cell walls as crystalline nanofibers, like steel reinforcements ...
A battery made of wood?
2013-06-20
A sliver of wood coated with tin could make a tiny, long-lasting, efficient and environmentally friendly battery.
But don't try it at home yet– the components in the battery tested by scientists at the University of Maryland are a thousand times thinner than a piece of paper. Using sodium instead of lithium, as many rechargeable batteries do, makes the battery environmentally benign. Sodium doesn't store energy as efficiently as lithium, so you won't see this battery in your cell phone -- instead, its low cost and common materials would make it ideal to store huge amounts ...
Group-based child care is linked to reduced emotional problems in children of depressed mothers
2013-06-20
This news release is available in French. Child care is linked to fewer emotional problems and symptoms of social withdrawal among children exposed to maternal depression, according to a new study of nearly 2000 children conducted by researchers in Montreal, Canada, at the Sainte-Justine University Hospital Research Center, Université du Québec à Montréal (UQAM), and University of Montreal.
"We found that children exposed to maternal depression during the preschool years were nearly two times more likely to develop emotional problems and separation anxiety symptoms. ...