(Press-News.org) CAMBRIDGE, MA -- Many researchers around the world are seeking ways to "scrub" carbon dioxide (CO2) from the emissions of fossil-fuel power plants as a way of curbing the gas that is considered most responsible for global climate change. But most such systems rely on complex plumbing to divert the steam used to drive the turbines that generate power in these plants, and such systems are not practical as retrofits to existing plants.
Now, researchers at MIT have come up with a scrubbing system that requires no steam connection, can operate at lower temperatures, and would essentially be a "plug-and-play" solution that could be added relatively easily to any existing power plant.
The new electrochemical system is described in a paper just published online in the journal Energy and Environmental Science, and written by doctoral student Michael Stern, chemical engineering professor T. Alan Hatton and two others.
The system is a variation on a well-studied technology that uses chemical compounds called amines, which bind with CO2 in the plant's emission stream and can then release the gas when heated in a separate chamber. But the conventional process requires that almost half of the power plant's low-pressure steam be diverted to provide the heat needed to force the amines to release the gas. That massive diversion would require such extensive changes to existing power plants that it is not considered economically feasible as a retrofit.
In the new system, an electrochemical process replaces the steam-based separation of amines and CO2. This system only requires electricity, so it can easily be added to an existing plant.
The system uses a solution of amines, injected at the top of an absorption column in which the effluent gases are rising from below. The amines bind with CO2 in the emissions stream and are collected in liquid form at the bottom of the column. Then, they are processed electrochemically, using a metal electrode to force the release of the CO2; the original amine molecules are then regenerated and reused.
As with the conventional thermal-amine scrubber systems, this technology should be capable of removing 90 percent of CO2 from a plant's emissions, the researchers say. But while the conventional CO2-capture process uses about 40 percent of a plant's power output, the new system would consume only about 25 percent of the power, making it more attractive.
In addition, while steam-based systems must operate continuously, the all-electric system can be dialed back during peak demand, providing greater operational flexibility, Stern says. "Our system is something you just plug in, so you can quickly turn it down when you have a high cost or high need for electricity," he says.
Another advantage is that this process produces CO2 under pressure, which is required to inject the gas into underground reservoirs for long-term disposal. Other systems require a separate compressor to pressurize the gas, creating further complexity and inefficiency.
The chemicals themselves — mostly small polyamines — are widely used and easily available industrial materials, says Hatton, the Ralph Landau Professor of Chemical Engineering Practice. Further research will examine which of several such compounds works best in the proposed system.
So far, the research team, which also includes former MIT research scientist Fritz Simeon and Howard Herzog, a senior research engineer at the MIT Energy Initiative, has done mathematical modeling and a small-scale laboratory test of the system. Next, they hope to move on to larger-scale tests to prove the system's performance. They say it could take five to 10 years for the system to be developed to the point of widespread commercialization.
Because it does not rely on steam from a boiler, this system could also be used for other applications that do not involve steam — such as cement factories, which are among the leading producers of CO2 emissions, Stern says. It could also be used to curb emissions from steel or aluminum plants.
It could also be useful in other CO2 removal, Hatton says, such as in submarines or spacecraft, where carbon dioxide can accumulate to levels that could endanger human health, and must be continually removed.
###
The work was supported by Siemens AG and by the U.S. Department of Energy through the Advanced Research Projects Agency for Energy.
Written by David Chandler, MIT News Office
Getting the carbon out of emissions
2013-06-27
ELSE PRESS RELEASES FROM THIS DATE:
New dispatch system could save money for trucking industry, make life easier for drivers
2013-06-27
CORVALLIS, Ore. – Engineers at Oregon State University are studying a new approach to organize and route truck transportation that could save millions of dollars, improve the quality of life for thousands of truck drivers and make freight transportation far more efficient.
The findings, published recently in Transportation Research Part E, show the feasibility of the new system. More research is still needed before implementation, but there's potential to revolutionize the way that truck transportation is handled in the United States and around the world, some experts ...
UCSB research points to a potential therapeutic approach to Alzheimer's disease
2013-06-27
(Santa Barbara, California) –– Building on research published eight years ago in the journal Chemistry and Biology, Kenneth S. Kosik, Harriman Professor in Neuroscience and co-director of the Neuroscience Research Institute (NRI) at UC Santa Barbara, and his team have now applied their findings to two distinct, well-known mouse models, demonstrating a new potential target in the fight against Alzheimer's and other neurodegenerative diseases.
The results were published online June 4 as the Paper of the Week in the Journal of Biological Chemistry. As a Paper of the Week, ...
Rutgers-Camden professor examines social capabilities of performing multiple-action sequences
2013-06-27
The day of the big barbecue arrives and it's time to fire up the grill. But rather than toss the hamburgers and hotdogs haphazardly onto the grate, you wait for the heat to reach an optimal temperature, and then neatly lay them out in their apportioned areas according to size and cooking times. Meanwhile, your friend is preparing the beverages. Cups are grabbed face down from the stack, turned over, and – using the other hand – filled with ice.
While these tasks – like countless, everyday actions – may seem trivial at first glance, they are actually fairly complex, according ...
People prefer 'carrots' to 'sticks' when it comes to healthcare incentives
2013-06-27
To keep costs low, companies often incentivize healthy lifestyles. Now, new research suggests that how these incentives are framed — as benefits for healthy-weight people or penalties for overweight people — makes a big difference.
The research, published in Psychological Science, a journal of the Association for Psychological Science, shows that policies that carry higher premiums for overweight individuals are perceived as punishing and stigmatizing.
Researcher David Tannenbaum of the Anderson School of Management at the University of California, Los Angeles wanted ...
DNA found outside genes plays largely unknown, potentially vital roles
2013-06-27
A new UC San Francisco study highlights the potential importance of the vast majority of human DNA that lies outside of genes within the cell.
The researchers found that about 85 percent of these stretches of DNA make RNA, a molecule that increasingly is being found to play important roles within cells. They also determined that this RNA-making DNA is more likely than other non-gene DNA regions to be associated with inherited disease risks.
The study, published in the free online journal PLOS Genetics on June 20, 2013, is one of the most extensive examinations of the ...
Yukon gold mine yields ancient horse fossil
2013-06-27
When University of Alberta researcher Duane Froese found an unusually large horse fossil in the Yukon permafrost, he knew it was important. Now, in a new study published online today in Nature, this fossil is rewriting the story of equine evolution as the ancient horse has its genome sequenced.
Unlike the small ice age horse fossils that are common across the unglaciated areas of the Yukon, Alaska and Siberia that date to the last 100,000 years, this fossil was at least the size of a modern domestic horse. Froese, an associate professor in the U of A Department of Earth ...
A stepping-stone for oxygen on Earth
2013-06-27
For most terrestrial life on Earth, oxygen is necessary for survival. But the planet's atmosphere did not always contain this life-sustaining substance, and one of science's greatest mysteries is how and when oxygenic photosynthesis—the process responsible for producing oxygen on Earth through the splitting of water molecules—first began. Now, a team led by geobiologists at the California Institute of Technology (Caltech) has found evidence of a precursor photosystem involving manganese that predates cyanobacteria, the first group of organisms to release oxygen into the ...
Solar power heads in a new direction: Thinner
2013-06-27
CAMBRIDGE, Mass- Most efforts at improving solar cells have focused on increasing the efficiency of their energy conversion, or on lowering the cost of manufacturing. But now MIT researchers are opening another avenue for improvement, aiming to produce the thinnest and most lightweight solar panels possible.
Such panels, which have the potential to surpass any substance other than reactor-grade uranium in terms of energy produced per pound of material, could be made from stacked sheets of one-molecule-thick materials such as graphene or molybdenum disulfide.
Jeffrey ...
Comparing genomes of wild and domestic tomato
2013-06-27
You say tomato, I say comparative transcriptomics. Researchers in the U.S., Europe and Japan have produced the first comparison of both the DNA sequences and which genes are active, or being transcribed, between the domestic tomato and its wild cousins.
The results give insight into the genetic changes involved in domestication and may help with future efforts to breed new traits into tomato or other crops, said Julin Maloof, professor of plant biology in the College of Biological Sciences at the University of California, Davis. Maloof is senior author on the study, published ...
First transiting planets in a star cluster discovered
2013-06-27
All stars begin their lives in groups. Most stars, including our Sun, are born in small, benign groups that quickly fall apart. Others form in huge, dense swarms that survive for billions of years as stellar clusters. Within such rich and dense clusters, stars jostle for room with thousands of neighbors while strong radiation and harsh stellar winds scour interstellar space, stripping planet-forming materials from nearby stars.
It would thus seem an unlikely place to find alien worlds. Yet 3,000 light-years from Earth, in the star cluster NGC 6811, astronomers have found ...