(Press-News.org) As the world becomes increasingly connected, the need to ensure the proper functioning of its many underlying networks -- such as the Internet, power grids, global air transportation and ecological networks -- also is increasing. But controlling networks is very difficult.
Now a Northwestern University research team has developed the first broadly applicable computational approach identifying interventions that can both rescue complex networks from the brink of failure and reprogram them to a desired task.
"A fundamental property of networks is that a perturbation to one node can affect other nodes, potentially causing the entire system to change behavior or fail," said Adilson E. Motter, who supervised the research. "We have turned this principle on its head for something positive: to control network behavior. This novel approach to control could have a transformative impact on the field of complex networks."
Motter is the Harold H. and Virginia Anderson Professor of Physics and Astronomy at Northwestern's Weinberg College of Arts and Sciences.
In a demonstration of its broad applicability, Motter and his colleagues used their framework both to mitigate cascading failures in a power-grid network and to identify potential drug targets in a biochemical signaling network of human cancer.
The findings will be published June 27 by the journal Nature Communications.
The same connections that provide functionality in networks also can serve as conduits for the propagation of failures and instabilities, Motter said. The emergence of global air transportation and computer networks, for example, brings obvious benefits but at the price of facilitating the spread of diseases and malware.
Furthermore, ecological networks are increasingly affected by perturbations stemming from human actions, and a growing number of human diseases are being linked to malfunction of cellular and molecular networks.
Networks defy human control, however, even in the simplest cases, not only because complex networks consist of a large number of complicatedly connected parts but mainly because they respond nonlinearly to disturbances: A small disturbance can create a disproportionately large problem.
"Previous and recent research on network control done in the network science community has focused mainly on linear models, for the excellent reason that it is in principle much simpler to manipulate linear dynamics," said Sean P. Cornelius, the lead author of the paper. He is a graduate student in Motter's research group.
"Real networks are nonlinear, however, which at first could be regarded as bad news but turns out to be a blessing in disguise," Cornelius said. "In the case of complex networks, ignoring nonlinearity would be like throwing out the baby with the bath water."
Key to the authors' framework is their accounting of this nonlinear nature of the dynamics in real networks. In such systems, the size of the response is generally not proportional to the size of the disturbance. Accordingly, small control interventions can lead to a large response that propagates through the entire network, rescuing or reprogramming it.
A breakthrough in the newly developed control approach is the development of a computational method that identifies small perturbations, which, after propagating through the network, will bring the system to the desired final state. In the parlance of dynamical systems theory, the authors exploit what are known as "basins of attraction" -- sets of network states that eventually will converge to a given stable state (or "attractor") of the system.
A complicating factor in the networks under consideration is that, in practice, control interventions applied by humans only can modulate a very small fraction of all nodes in the network. The framework developed by the Northwestern researchers helps identify the critical nodes for controlling large networks.
"This can be one node out of tens, hundreds or even thousands of nodes, depending on the application," said Motter, who also is an executive committee member of the Northwestern Institute on Complex Systems (NICO). "In treating a disease, for example, doctors cannot directly control all of the many thousand genes in a cell, but we can hope to influence them indirectly by manipulating a few key genes that will then influence the others."
In an application to a form of cancer caused by abnormal survival of certain white blood cells, the researchers were able to identify potential curative interventions mediated by the control of only three genes or proteins, on average.
The researchers also applied their framework to a simple model of power-grid networks. "In these networks, it is critical that the power generators be synchronized with one another," Cornelius said. "But, under certain conditions, this state of affairs can be disrupted by, say, a tree falling on a power line."
The authors showed that by manipulating only a portion of the variables, it is in principle possible to restore power-grid synchrony following severe disturbances.
Similar results are relevant for the control of cascading failures in diverse systems, for ecosystems management and potentially for the mitigation of financial crises.
###
The title of the paper is "Realistic Control of Network Dynamics." In addition to Motter and Cornelius, the paper is co-authored by William L. Kath. He is a professor of engineering sciences and applied mathematics in Northwestern's McCormick School of Engineering and Applied Science.
Keeping networks under control
New approach can control large complex networks, from cells to power grids
2013-06-27
ELSE PRESS RELEASES FROM THIS DATE:
Gene deletion affects early language and brain white matter
2013-06-27
HOUSTON -- (June 27, 2013) – A chromosomal deletion is associated with changes in the brain's white matter and delayed language acquisition in youngsters from Southeast Asia or with ancestral connections to the region, said an international consortium led by researchers at Baylor College of Medicine. However, many such children who can be described as late-talkers may overcome early speech and language difficulties as they grow.
The finding involved both cutting edge technology and two physicians with an eye for unusual clinical findings. Dr. Seema R. Lalani, a physician-scientist ...
Researchers call for rethinking efforts to prevent interplanetary contamination
2013-06-27
PULLMAN, Wash.—Two university researchers say environmental restrictions have become unnecessarily restrictive and expensive—on Mars.
Writing in the journal Nature Geoscience, astrobiologists Alberto Fairén of Cornell University and Dirk Schulze-Makuch of Washington State University say the NASA Office of Planetary Protection's "detailed and expensive" efforts to keep Earth microorganisms off Mars are making missions to search for life on the red planet "unviable."
The researchers claim "the protocols and policies of Planetary Protection are unnecessarily restricting ...
Insights into how brain compensates for recurring hearing loss point to new glue ear therapies
2013-06-27
Important new insights into how the brain compensates for temporary hearing loss during infancy, such as that commonly experienced by children with glue ear, are revealed in a research study in ferrets. The Wellcome Trust-funded study at the University of Oxford could point to new therapies for glue ear and has implications for the design of hearing aid devices.
Normally, the brain works out where sounds are coming from by relying on information from both ears located on opposite sides of the head, such as differences in volume and time delay in sounds reaching the two ...
UCSF researchers discover species-recognition system in fruit flies
2013-06-27
A team led by UC San Francisco researchers has discovered a sensory system in the foreleg of the fruit fly that tells male flies whether a potential mate is from a different species. The work addresses a central problem in evolution that is poorly understood: how animals of one species know not to mate with animals of other species.
For the common fruit fly D. melanogaster, the answer lies in the chemoreceptor Gr32a, located on sensory neurons on the male fly's foreleg. "In nature, this sensory system would prevent the creation of hybrids that may not survive or cannot ...
Power for seaports may be the next job for hydrogen fuel cells
2013-06-27
LIVERMORE, Calif.— Providing auxiliary hydrogen power to docked or anchored ships may soon be added to the list of ways in which hydrogen fuel cells can provide efficient, emissions-free energy.
Hydrogen fuel cells are already powering mobile lighting systems, forklifts, emergency backup systems and light-duty trucks, among other applications. Now, researchers at Sandia National Laboratories have found that hydrogen fuel cells may be both technically feasible and commercially attractive as a clean, quiet and efficient power source for ships at berth, replacing on-board ...
Spiral galaxies like Milky Way bigger than thought, says CU-Boulder study
2013-06-27
Let's all fist bump: Spiral galaxies like our own Milky Way appear to be much larger and more massive than previously believed, according to a new University of Colorado Boulder study by researchers using the Hubble Space Telescope.
CU-Boulder Professor John Stocke, study leader, said new observations with Hubble's $70 million Cosmic Origins Spectrograph, or COS, designed by CU-Boulder show that normal spiral galaxies are surrounded by halos of gas that can extend to over 1 million light-years in diameter. The current estimated diameter of the Milky Way, for example, ...
Spinning up antibacterial silver on glass
2013-06-27
The antibacterial effects of silver are well established. Now, researchers at Yonsei University in Seoul, Republic of Korea, have developed a technique to coat glass with a layer of silver ions that can prevent growth of pathogenic bacteria including Escherichia coli, Salmonella typhimurium and Campylobacter jejuni. The technology could be used to protect medical equipment and be particularly useful for applications in disaster recovery and the military environment.
Materials scientist Se-Young Choi and colleagues Cheol-Young Kim, Yu-Ri Choi and Kwang-Mahn Kim, explain ...
River deep, mountain high -- new study reveals clues to lifecycle of worlds iconic mountains
2013-06-27
Scientists have discovered the reasons behind the lifespan of some of the world's iconic mountain ranges.
The study conducted by the University of Melbourne, Australia, and Aarhus University, Denmark, has revealed that interactions between landslides and erosion, caused by rivers, explains why some mountain ranges exceed their expected lifespan.
Co-author Professor Mike Sandiford of the School of Earth Sciences at the University of Melbourne said the study had answered the quandary as to why there was fast erosion in active mountain ranges in the Himalayas and slow ...
No more leakage of explosive electrolytes in batteries
2013-06-27
Ulsan, South Korea-- A research team at Ulsan National Institute of Science and Technology (UNIST), S. Korea, found a new physical organogel electrolyte with two unique characteristics: an irreversible thermal gelation and a high value of the Li+ transference number.
A Recent fire on a Boeing 787 on the ground in Boston, US, was caused by a battery failure, it resulted in the release of flammable electrolytes, heat damage and smoke. If they had used a safer electrolyte, the risk would have been reduced.
Electrolytes are essential components of supercapacitors, batteries ...
Improving measurements by reducing quantum noise
2013-06-27
If you want to measure something very precisely, such as slight variations of a length, then you are very likely to use light waves. However, many effects, such as variations of gravity, or surface forces, can only be measured using particles that have a mass. Since, according to the rules of quantum mechanics, massive particles also behave like waves, interferometers can be built in which single atoms or even entire atomic clouds are used instead of light. A team from the Vienna University of Technology has now been able to develop a Mach-Zehnder interferometer for Bose-Einstein ...
LAST 30 PRESS RELEASES:
Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)
A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets
New scan method unveils lung function secrets
Searching for hidden medieval stories from the island of the Sagas
Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model
Neuroscience leader reveals oxytocin's crucial role beyond the 'love hormone' label
Twelve questions to ask your doctor for better brain health in the new year
Microelectronics Science Research Centers to lead charge on next-generation designs and prototypes
Study identifies genetic cause for yellow nail syndrome
New drug to prevent migraine may start working right away
Good news for people with MS: COVID-19 infection not tied to worsening symptoms
Department of Energy announces $179 million for Microelectronics Science Research Centers
Human-related activities continue to threaten global climate and productivity
Public shows greater acceptance of RSV vaccine as vaccine hesitancy appears to have plateaued
Unraveling the power and influence of language
Gene editing tool reduces Alzheimer’s plaque precursor in mice
TNF inhibitors prevent complications in kids with Crohn's disease, recommended as first-line therapies
Twisted Edison: Bright, elliptically polarized incandescent light
Structural cell protein also directly regulates gene transcription
Breaking boundaries: Researchers isolate quantum coherence in classical light systems
Brain map clarifies neuronal connectivity behind motor function
Researchers find compromised indoor air in homes following Marshall Fire
Months after Colorado's Marshall Fire, residents of surviving homes reported health symptoms, poor air quality
Identification of chemical constituents and blood-absorbed components of Shenqi Fuzheng extract based on UPLC-triple-TOF/MS technology
'Glass fences' hinder Japanese female faculty in international research, study finds
Vector winds forecast by numerical weather prediction models still in need of optimization
New research identifies key cellular mechanism driving Alzheimer’s disease
Trends in buprenorphine dispensing among adolescents and young adults in the US
Emergency department physicians vary widely in their likelihood of hospitalizing a patient, even within the same facility
Firearm and motor vehicle pediatric deaths— intersections of age, sex, race, and ethnicity
[Press-News.org] Keeping networks under controlNew approach can control large complex networks, from cells to power grids