(Press-News.org) MANHATTAN, Kan. -- The world's food supply got a little more plentiful thanks to a scientific breakthrough.
Eduard Akhunov, associate professor of plant pathology at Kansas State University, and his colleague, Jorge Dubcovsky from the University of California-Davis, led a research project that identified a gene that gives wheat plants resistance to one of the most deadly races of the wheat stem rust pathogen -- called Ug99 -- that was first discovered in Uganda in 1999. The discovery may help scientists develop new wheat varieties and strategies that protect the world's food crops against the wheat stem rust pathogen that is spreading from Africa to the breadbaskets of Asia and can cause significant crop losses.
Other Kansas State University researchers include Harold Trick, professor of plant pathology; Andres Salcedo, doctoral candidate in genetics; and Cyrille Saintenac, a postdoctoral research associate currently working at the Institut National de la Recherche Agronomique in France. The project was funded by the U.S. Department of Agriculture and Borlaug Global Rust Initiative.
The team's study, "Identification of Wheat Gene Sr35 that Confers Resistance to Ug99 Stem Rust Race Group," appears in the journal Science.
It identifies the stem rust resistance gene named Sr35, and appears alongside a study from an Australian group that identifies another effective resistance gene called Sr33.
"This gene, Sr35, functions as a key component of plants' immune system," Akhunov said. "It recognizes the invading pathogen and triggers a response in the plant to fight the disease."
Wheat stem rust is caused by a fungal pathogen. According to Akhunov, since the 1950s wheat breeders have been able to develop wheat varieties that are largely resistant to this pathogen. However, the emergence of strain Ug99 in Uganda in 1999 devastated crops and has spread to Kenya, Ethiopia, Sudan and Yemen, though has yet to reach the U.S.
"Until that point, wheat breeders had two or three genes that were so efficient against stem rust for decades that this disease wasn't the biggest concern," Akhunov said. "However, the discovery of the Ug99 race of pathogen showed that changes in the virulence of existing pathogen races can become a huge problem."
As a first line of defense, wheat breeders and researchers began looking for resistance genes among those that had already been discovered in the existing germplasm repositories, he said.
"The Sr35 gene was one of those genes that was discovered in einkorn wheat grown in Turkey," Akhunov said. "Until now, however, we did not know what kind of gene confers resistance to Ug99 in this wheat accession."
To identify the resistance gene Sr35, the team turned to einkorn wheat that is known to be resistant to the Ug99 fungal strain. Einkorn wheat has limited economic value and is cultivated in small areas of the Mediterranean region. It has been replaced by higher yielding pasta and bread wheat varieties.
Researchers spent nearly four years trying to identify the location of the Sr35 gene in the wheat genome, which contains nearly two times more genetic information than the human genome.
Once the researchers narrowed the list of candidate genes, they used two complimentary approaches to find the Sr35 gene. First, they chemically mutagenized the resistant accession of wheat to identify plants that become susceptible to the stem rust pathogen.
"It was a matter of knocking out each candidate gene until we found the one that made a plant susceptible," Akhunov said. "It was a tedious process and took a lot of time, but it was worth the effort."
Next, researchers isolated the candidate gene and used biotechnical approaches to develop transgenic plants that carried the Sr35 gene and showed resistance to the Ug99 race of stem rust.
Now that the resistance gene has been found, Akhunov and colleagues are looking at what proteins are transferred by the fungus into the wheat plants and recognized by the protein encoded by the Sr35 gene. This will help researchers to better understand the molecular mechanisms behind infection and develop new approaches for controlling this devastating pathogen.
### END
Resistance gene found against Ug99 wheat stem rust pathogen
2013-06-28
ELSE PRESS RELEASES FROM THIS DATE:
New low-cost, transparent electrodes
2013-06-28
WASHINGTON D.C., June 27, 2013 -- Indium tin oxide (ITO) has become a standard material in light-emitting diodes, flat panel plasma displays, electronic ink and other applications because of its high performance, moisture resistance, and capacity for being finely etched. But indium is also rare and expensive, and it requires a costly deposition process to make opto-electronic devices and makes for a brittle electrode. Replacing indium as the default material in transparent electrodes is a high priority for the electronics industry.
Now, in a paper appearing in APL Materials, ...
After Great Dane success, cancer doc eyes brain tumors
2013-06-28
Michael Graner, PhD, is a CU Cancer Center investigator and associate professor of neurosurgery at the CU School of Medicine. So when his 12-year-old Great Dane got sick, he knew what to do.
"We got Star from the Mid-Atlantic Great Dane Rescue," Graner says. "She got her name because she was always smiling, like a movie star waiting for photos. She'd already been to so many shelters, we didn't want to change her name again and so we kept it."
At 12, after many years with the Graners, Star had already reached about double the average lifespan for the breed. When she ...
Exotic alloys for potential energy applications
2013-06-28
WASHINGTON D.C., June 28, 2013 -- The search for thermoelectrics, exotic materials that convert heat directly into electricity, has received a boost from researchers at the California Institute of Technology and the University of Tokyo, who have found the best way to identify them.
In the new open-access journal APL Materials, the team shows that a relatively simple technique called the "rigid band approximation" can predict a material's properties more accurately than a competing, more complicated method.
"The rigid band approach still supplies the simple, predictive ...
Scientists discover thriving colonies of microbes in ocean 'plastisphere'
2013-06-28
Scientists have discovered a diverse multitude of microbes colonizing and thriving on flecks of plastic that have polluted the oceans—a vast new human-made flotilla of microbial communities that they have dubbed the "plastisphere."
In a study recently published online in Environmental Science & Technology, the scientists say the plastisphere represents a novel ecological habitat in the ocean and raises a host of questions: How will it change environmental conditions for marine microbes, favoring some that compete with others? How will it change the overall ocean ecosystem ...
Why is pulmonary hypertension at high altitude so common and dangerous?
2013-06-28
New Rochelle, NY, June 26, 2013—Everyone who climbs to high altitude will develop pulmonary hypertension, a temporary constriction of blood vessels that results in increasing strain on the right heart. It is a normal adaptive mechanism but if exaggerated can have serious consequences, resulting in life-threatening disorders and remodeling of the pulmonary circulation. Five mini-Review articles that comprise a Special Topic section in High Altitude Medicine & Biology, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers provide an up-to-date overview of the clinical ...
Helping SAD sufferers sleep soundly
2013-06-28
PITTSBURGH—Lying awake in bed plagues everyone occasionally, but for those with seasonal affective disorder, sleeplessness is routine. University of Pittsburgh researchers report in the Journal of Affective Disorders that individuals with seasonal affective disorder (SAD)—a winter depression that leads to loss of motivation and interest in daily activities—have misconceptions about their sleep habits similar to those of insomniacs. These findings open the door for treating seasonal affective disorder similar to the way doctors treat insomnia.
Kathryn Roecklein, primary ...
Biochemists identify protease substrates important for bacterial growth and development
2013-06-28
AMHERST, Mass. – Reporting this month in Molecular Microbiology, Peter Chien and colleagues at the University of Massachusetts Amherst describe using a combination of biochemistry and mass spectrometry to "trap" scores of new candidate substrates of the protease ClpXP to reveal how protein degradation is critical to cell cycle progression and bacterial development. The new understanding could lead to identifying new antibiotic targets.
As Chien (pronounced Chen) explains, to carry out fundamental life processes such as growing and dividing, cells must orchestrate, in ...
Mapping out how to save species
2013-06-28
In stunning color, new biodiversity research from North Carolina State University maps out priority areas worldwide that hold the key to protecting vulnerable species and focusing conservation efforts.
The research, published online in Proceedings of the National Academy of Sciences, pinpoints the highest global concentrations of mammals, amphibians and birds on a scale that's 100 times finer than previous assessments. The findings can be used to make the most of available conservation resources, said Dr. Clinton Jenkins, lead author and research scholar at NC State ...
A second amyloid may play a role in Alzheimer's disease, UC Davis researchers find
2013-06-28
A protein secreted with insulin travels through the bloodstream and accumulates in the brains of individuals with type 2 diabetes and dementia, in the same manner as the amyloid beta Αβ plaques that are associated with Alzheimer's disease, a study by researchers with the UC Davis Alzheimer's Disease Center has found.
The study is the first to identify deposits of the protein, called amylin, in the brains of people with Alzheimer's disease, as well as combined deposits of amylin and plaques, suggesting that amylin is a second amyloid as well as a new biomarker ...
Low self-control promotes selfless behavior in close relationships
2013-06-28
When faced with the choice of sacrificing time and energy for a loved one or taking the self-centered route, people's first impulse is to think of others, according to new research published in Psychological Science, a journal of the Association for Psychological Science.
"For decades psychologists have assumed that the first impulse is selfish and that it takes self-control to behave in a pro-social manner," says lead researcher Francesca Righetti of VU University Amsterdam in the Netherlands. "We did not believe that this was true in every context, and especially not ...