(Press-News.org) Scientists at the University of California, Santa Cruz, have trapped the ribosome, a protein-building molecular machine essential to all life, in a key transitional state that has long eluded researchers. Now, for the first time, scientists can see how the ribosome performs the precise mechanical movements needed to translate genetic code into proteins without making mistakes.
"This is something that the whole field has been pursuing for the past decade," said Harry Noller, Sinsheimer Professor of Molecular Biology at UC Santa Cruz. "We've trapped the ribosome in the middle of its movement during translocation, which is the most interesting, profound, and complex thing the ribosome does."
Understanding ribosomes is important not only because of their crucial role as the protein factories of all living cells, but also because many antibiotics work by targeting bacterial ribosomes. Research on ribosomes by Noller and others has led to the development of novel antibiotics that hold promise for use against drug-resistant bacteria.
Noller's lab is known for its pioneering work to elucidate the atomic structure of the ribosome, which is made of long chains of RNA and proteins interlaced together in complicated foldings. Using x-ray crystallography, his group has shown the ribosome in different conformations as it interacts with other molecules. The new study, led by postdoctoral researcher Jie Zhou, is published in the June 28 issue of Science.
To make a new protein, the genetic instructions are first copied from the DNA sequence of a gene to a messenger RNA molecule. The ribosome then "reads" the sequence on the messenger RNA, matching each three-letter "codon" of genetic code with a specific protein building block, one of 20 amino acids. In this way, the ribosome builds a protein molecule with the exact sequence of amino acids specified by the gene. The matching of codons to amino acids is done via transfer RNA molecules, each of which carries a specific amino acid to the ribosome and lines it up with the matching codon on the messenger RNA.
"The big question has been to understand how messenger RNA and transfer RNA are moved synchronously through the ribosome as the messenger RNA is translated into protein," Noller said. "The transfer RNAs are large macromolecules, and the ribosome has moving parts that enable it to move them through quickly and accurately at a rate of 20 per second."
The key step, called translocation, occurs after the bond is formed joining a new amino acid to the growing protein chain. The transfer RNA then leaves that amino acid behind and moves to the next site on the ribosome, along with a synchronous movement of the messenger RNA to bring the next codon and its associated amino acid into position for bond formation. The new study shows the ribosome in the midst of a key step in this process.
"This gives us snapshots of the intermediate state in the movement," Noller said. "We can now see how the ribosome does this with a rotational movement of the small subunit, and we can see what look to be the 'pawls' of a ratcheting mechanism that prevents slippage of the translational reading frame."
Many antibiotics interfere with the function of the bacterial ribosome by preventing or retarding this translocational movement. Understanding the structural and dynamic details of this movement could help researchers design new antibiotics.
Translocation involves two steps (as Noller's lab showed back in 1989). Step one is the movement of the tRNA's "acceptor end" (where it carried the amino acid). This leads to a hybrid state, with the two ends of the tRNA in two different sites on the ribosome: the "anticodon end" is still lined up with the matching mRNA codon in one site, while the acceptor end has moved on to the next site. Step two is the movement of the tRNA's anticodon end together with the messenger RNA, which advances by one codon. Step two requires a catalyst called elongation factor G (EF-G). The new study shows the ribosome in the middle of step two, with EF-G bound to it and the tRNA halfway between the hybrid state and the final state.
Noller has spent decades working to understand how the ribosome works. Being able to see how it moves, he said, is an exciting moment.
"This is one of the most fundamental movements in all of biology, at the root of the whole mechanism for translation of the genetic code, and we now understand it all the way down to the molecular level," Noller said. "This mechanism had to be in place around the origin of life as we know it."
###
In addition to Noller and Zhou, the coauthors of the paper include postdoctoral researcher Laura Lancaster and research specialist John Paul Donohue. This work was supported by grants from the National Institutes of Health (grant numbers GM-17129 and GM-59140).
END
In a perspective piece appearing today in the journal Science, researchers at University of Rochester Medical Center (URMC) point to a newly discovered system by which the brain removes waste as a potentially powerful new tool to treat neurological disorders like Alzheimer's disease. In fact, scientists believe that some of these conditions may arise when the system is not doing its job properly.
"Essentially all neurodegenerative diseases are associated with the accumulation of cellular waste products," said Maiken Nedergaard, M.D., D.M.Sc., co-director of the URMC ...
The discovery confirms the model proposed by the team in 2008 to account for observations that could not be explained by the established model of mitochondrial function. Mitochondria are the organelles in the interior of cells that, among other functions, extract energy from nutrients and convert it into a form that can be used by the cell for its vital processes.
The consumption, digestion and assimilation of nutrients serves the ultimate purpose of fueling each and every cell in the body. The breakdown of nutrients in the digestive tract requires energy to release simple ...
Non-invasive brain stimulation may help stroke survivors recover speech and language function, according to new research in the American Heart Association journal Stroke.
Between 20 percent to 30 percent of stroke survivors have aphasia, a disorder that affects the ability to grasp language, read, write or speak. It's most often caused by strokes that occur in areas of the brain that control speech and language.
"For decades, skilled speech and language therapy has been the only therapeutic option for stroke survivors with aphasia," said Alexander Thiel, M.D., study ...
South Asians (from India, Pakistan, Bangladesh) may have to exercise more than white Europeans to achieve the same levels of fitness and reduce their risk of diabetes.
Researchers at the University of Glasgow have found that lower fitness levels in middle-aged men of South Asian origin are contributing to higher blood sugar levels and increased diabetes risk compared with white men.
The research, published in Diabetologia, the journal of the European Association for the Study of Diabetes (EASD), suggests that physical activity guidelines may need to be changed to take ...
VIDEO:
Researchers were able increase data flow through fiber optic cables by moving light through them in a spiral motion, rather than a straight line.
Click here for more information.
As rapidly increasing demand for bandwidth strains the Internet's capacity, a team of engineers has devised a new fiber optic technology that promises to increase bandwidth dramatically. The new technology could enable Internet providers to offer much greater connectivity – from decreased network ...
DURHAM, N.C. -- Children with more genetic risks for asthma are not only more likely to develop the condition at a young age, but they are also more likely to continue to suffer with asthma into adulthood. The finding reported by Duke University researchers is one of the latest to come from a 40-year longitudinal study of New Zealanders.
"We've been able to look at how newly discovered genetic risks relate to the life course of asthma at an unprecedented level of resolution," said Daniel Belsky, a postdoctoral fellow at the Duke Institute for Genome Sciences & Policy ...
The findings are featured as the cover story of the June 28 edition of the journal Science.
An international research team led by Ferran Garcia-Pichel, microbiologist and professor with ASU's School of Life Sciences, conducted continental-scale surveys of the microbial communities that live in soil crusts. The scientists collected crust samples from Oregon to New Mexico, and Utah to California and studied them by sequencing their microbial DNA.
While there are thousands of microbe species in just one pinch of crust, two cyanobacteria —bacteria capable of photosynthesis ...
The authors say the drug "seems to reduce the risk of death and suicide by more than 60% compared with placebo" and suggest this review "reinforces lithium as an effective agent to reduce the risk of suicide in people with mood disorders."
Mood disorders are a leading cause of global disability. The two main types are unipolar disorder (often called clinical depression) and bipolar disorder (often called manic depression). Both are serious, long term conditions involving extreme mood swings, but people with bipolar depression also experience episodes of mania or hypomania. ...
The results show that each 0.1 g per day or 0.1% energy per day increment of intake of n-3 polyunsaturated fatty acid (n-3 PUFA) derived from fish was associated with a 5% reduction in risk. To achieve this risk reduction, intake of oily fish such as salmon, tuna or sardines should be 1-2 portions per person per week.
Breast cancer is one of the most common cancers, accounting for 23% of total cancer cases and 14% of cancer deaths in 2008. Studies suggest that a healthy diet and lifestyle is crucial for the prevention of breast cancer, and dietary fat is one of the most ...
The development of an easy to use, low cost method of detecting dengue virus in mosquitoes based on gold nanoparticles is reported in BioMed Central's open access journal Virology Journal. The assay is able to detect lower levels of the virus than current tests, and is easy to transport and use in remote regions.
Half the world's population is at risk of Dengue virus infection – it infects 50-100 million people per year, approximately half a million of these require hospitalization and 2.5% (most of which are children) will die. It is one of the most dangerous viruses ...