PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Tiny nanocubes help scientists tell left from right

New method could improve drug development, optical sensors and more

2013-06-28
(Press-News.org) UPTON, NY-In chemical reactions, left and right can make a big difference. A "left-handed" molecule of a particular chemical composition could be an effective drug, while its mirror-image "right-handed" counterpart could be completely inactive. That's because, in biology, "left" and "right" molecular designs are crucial: Living organisms are made only from left-handed amino acids. So telling the two apart is important-but difficult.

Now, a team of scientists at the U.S. Department of Energy's Brookhaven National Laboratory and Ohio University has developed a new, simpler way to discern molecular handedness, known as chirality. They used gold-and-silver cubic nanoparticles to amplify the difference in left- and right-handed molecules' response to a particular kind of light. The study, described in the journal Nano Letters, provides the basis for a new way to probe the effects of handedness in molecular interactions with unprecedented sensitivity.

"Our discovery and methods based on this research could be extremely useful for the characterization of biomolecular interactions with drugs, probing protein folding, and in other applications where stereometric properties are important," said Oleg Gang, a researcher at Brookhaven's Center for Functional Nanomaterials and lead author on the paper. "We could use this same approach to monitor conformational changes in biomolecules under varying environmental conditions, such as temperature-and also to fabricate nano-objects that exhibit a chiral response to light, which could then be used as new kinds of nanoscale sensors."

The scientists knew that left- and right-handed chiral molecules would interact differently with "circularly polarized" light-where the direction of the electrical field rotates around the axis of the beam. This idea is similar to the way polarized sunglasses filter out reflected glare unlike ordinary lenses.

Other scientists have detected this difference, called "circular dichroism," in organic molecules' spectroscopic "fingerprints"-detailed maps of the wavelengths of light absorbed or reflected by the sample. But for most chiral biomolecules and many organic molecules, this "CD" signal is in the ultraviolet range of the electromagnetic spectrum, and the signal is often weak. The tests thus require significant amounts of material at impractically high concentrations.

The team was encouraged they might find a way to enhance the signal by recent experiments showing that coupling certain molecules with metallic nanoparticles could greatly increase their response to light (see: http://www.bnl.gov/newsroom/news.php?a=11157). Theoretical work even suggested that these so-called plasmonic particles-which induce a collective oscillation of the material's conductive electrons, leading to stronger absorption of a particular wavelength-could bump the signal into the visible light portion of the spectroscopic fingerprint, where it would be easier to measure.

The group experimented with different shapes and compositions of nanoparticles, and found that cubes with a gold center surrounded by a silver shell are not only able to show a chiral optical signal in the near-visible range, but even more striking, were effective signal amplifiers. For their test biomolecule, they used synthetic strands of DNA-a molecule they were familiar with using as "glue" for sticking nanoparticles together.

When DNA was attached to the silver-coated nanocubes, the signal was approximately 100 times stronger than it was for free DNA in the solution. That is, the cubic nanoparticles allowed the scientists to detect the optical signal from the chiral molecules (making them "visible") at 100 times lower concentrations.

"This is a very large optical amplification relative to what was previously observed," said Fang Lu, the first author on the paper.

The observed amplification of the circular dichroism signal is a consequence of the interaction between the plasmonic particles and the "exciton," or energy absorbing, electrons within the DNA-nanocube complex, the scientists explained.

"This research could serve as a promising platform for ultrasensitive sensing of chiral molecules and their transformations in synthetic, biomedical, and pharmaceutical applications," Lu said.

"In addition," said Gang, "our approach offers a way to fabricate, via self-assembly, discrete plasmonic nano-objects with a chiral optical response from structurally non-chiral nano-components. These chiral plasmonic objects could greatly enhance the design of metamaterials and nano-optics for applications in energy harvesting and optical telecommunications."

### This research was conducted at the Center for Functional Nanomaterials and funded by the DOE Office of Science and by the National Science Foundation.

The Center for Functional Nanomaterials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the U.S. Department of Energy, Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please click here: http://science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Related Links

Scientific paper: Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality
Multi-Component Nano-Structures with Tunable Optical Properties
Nanoparticles Increase Intensity of Quantum Dots' Glow
Switchable Nanostructures Made with DNA
DNA-Based Assembly Line for Precision Nano-Cluster Construction


ELSE PRESS RELEASES FROM THIS DATE:

This image could lead to better antibiotics

2013-06-28
This may look like a tangle of squiggly lines, but you're actually looking at a molecular machine called a ribosome. Its job is to translate DNA sequences into proteins, the workhorse compounds that sustain you and all living things. The image is also a milestone. It's the first time the atom-by-atom structure of the ribosome has been seen as it's attached to a molecule that controls its motion. That's big news if you're a structural biologist. But there's another way to look at this image, one that anyone who's suffered a bacterial infection can appreciate. The image ...

Scripps Florida scientists turn muscular dystrophy defect on and off in cells

2013-06-28
JUPITER, FL, June 28, 2013 – For the first time, scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified small molecules that allow for complete control over a genetic defect responsible for the most common adult onset form of muscular dystrophy. These small molecules will enable scientists to investigate potential new therapies and to study the long-term impact of the disease. "This is the first example I know of at all where someone can literally turn on and off a disease," said TSRI Associate Professor Matthew Disney, whose new research ...

Exploring dinosaur growth

2013-06-28
Psittacosaurus, the 'parrot dinosaur' is known from more than 1000 specimens from the Cretaceous, 100 million years ago, of China and other parts of east Asia. As part of his PhD thesis at the University of Bristol, Qi Zhao, now on the staff of the Institute for Vertebrate Paleontology in Beijing, carried out the intricate study on bones of babies, juveniles and adults. Dr Zhao said: "Some of the bones from baby Psittacosaurus were only a few millimetres across, so I had to handle them extremely carefully to be able to make useful bone sections. I also had to be sure ...

Complex activity patterns emerge from simple underlying laws

2013-06-28
A new study from researchers at Uppsala University and University of Havana uses mathematic modeling and experiments on ants to show that a group is capable of developing flexible resource management strategies and characteristic responses of its own. The results are now published in Physical Review Letters. Group-living animals are led to regulate their activity and to make decisions on how to manage resources, under the action of a variety of environmental stimuli and of their intrinsic interactions. The latter are typically cooperative, in the sense that the activity ...

Boat noise stops fish finding home

2013-06-28
Sophie Holles, a PhD researcher at the University of Bristol and one of the study's authors, said: "Natural underwater sound is used by many animals to find suitable habitat, and traffic noise is one of the most widespread pollutants. If settlement is disrupted by boat traffic, the resilience of habitats like reefs could be affected." Sound travels better underwater than in air and reefs are naturally noisy places: fish and invertebrates produce feeding and territorial sounds while wind, waves and currents create other background noise. Boats can be found around all ...

Detached-eddy simulations and analyses on new vortical flows over a 76/40 double delta wing

2013-06-28
The double delta wing is a simplified configuration used for studying aircraft aerodynamics. It is composed of a highly-swept delta wing connected in front of the main delta wing with a smaller sweep, reflecting the combination of a leading edge extension and the swept main wing. The aerodynamic performance of such wings, which includes the behavior of the leeside vortical flows at moderate and high angles of attack (AoA) at low speed, is of research interest. The prominent aerodynamic feature of the delta wing is the dominant leading edge vortex pair on the lee side, ...

Scientists discover new mechanism regulating the immune response

2013-06-28
Scientists at an Academy of Finland Centre of Excellence have discovered a new mechanism regulating the immune response that can leave a person susceptible to autoimmune diseases. A fresh study by Turku Centre for Biotechnology and Aalto University in Finland is the first to report a new mechanism that regulates specification of lymphocytes, the white blood cells pivotal to immune response. By combining state-of-the art techniques, next-generation deep sequencing and computational data mining, the researchers discovered new epigenetic factors regulating lymphocyte function. ...

Dendritic cell therapy improves kidney transplant survival, Pitt team says

2013-06-28
PITTSBURGH, June 28, 2013 -- A single systemic dose of special immune cells prevented rejection for almost four months in a preclinical animal model of kidney transplantation, according to experts at the University of Pittsburgh School of Medicine. Their findings, now available in the online version of the American Journal of Transplantation, could lay the foundation for eventual human trials of the technique. Organ transplantation has saved many lives, but at the cost of sometimes lifelong requirements for powerful immunosuppressive medication that can have serious side ...

Pluripotent stem cell-derived neurons may be a viable Parkinson's disease treatment

2013-06-28
Putnam Valley, NY. (Jun. 28 2013) – A team of researchers from Rush University, Yale University, the University of Colorado and the St. Kitts Biomedical Research Foundation transplanted human embryonic stem cells into primate laboratory animals modeled with Parkinson's disease and found "robust survival" of the cells after six weeks and indications that the cells were "well integrated" into the host animals. The study appears as an early e-publication for the journal Cell Transplantation, and is now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/pre-prints/ct1000wakeman. ...

SCI patients treated with own olfactory ensheathing cells realize neurologic improvement

2013-06-28
Putnam Valley, NY. (June 28 2013) – A team of researchers in Poland who treated three of six paraplegics with spinal cord injury using transplanted olfactory ensheathing cells found that the three treated patients showed neurological improvement and no adverse effects while the three control patients who did not receive transplants saw no improvement. The study appears as an early e-publication for the journal Cell Transplantation, and is now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/pre-prints/ct0799tabakow. "Most accepted treatments ...

LAST 30 PRESS RELEASES:

Exposure to more artificial light at night may raise heart disease risk

Optimal cardiovascular health among people with Type 2 diabetes may offset dementia risk

Quick CPR from lay rescuers can nearly double survival for children after cardiac arrest

An AI tool detected structural heart disease in adults using a smartwatch

Assessing heart-pumping glitch may reduce stroke risk in adults with heart muscle disease

Low-dose aspirin linked to lower cardiovascular event risk for adults with Type 2 diabetes

Long-term use of melatonin supplements to support sleep may have negative health effects

Healthy lifestyle combined with newer diabetes medications lowered cardiovascular risk

Researchers pinpoint target for treating virus that causes the stomach bug

Scientists produce powerhouse pigment behind octopus camouflage

Researchers unveil a powerful new gene-switch tool

Analyzing 3 biomarker tests together may help identify high heart disease risk earlier

Study shows how kids learn when to use capital letters - it’s not just about rules

New switch for programmed cell death identified

Orcas seen killing young great white sharks by flipping them upside-down

ETRI achieves feat of having its technology adopted as Brazil’s broadcasting standard

Agricultural practices play a decisive role in the preservation or degradation of protected areas

Longer distances to family physician has negative effect on access to health care

Caution advised with corporate virtual care partnerships

Keeping pediatrics afloat in a sea of funding cuts

Giant resistivity reduction in thin film a key step towards next-gen electronics for AI

First pregnancy with AI-guided sperm recovery method developed at Columbia

Global study reveals how bacteria shape the health of lakes and reservoirs

Biochar reimagined: Scientists unlock record-breaking strength in wood-derived carbon

Synthesis of seven quebracho indole alkaloids using "antenna ligands" in 7-10 steps, including three first-ever asymmetric syntheses

BioOne and Max Planck Society sign 3-year agreement to include subscribe to open pilot

How the arts and science can jointly protect nature

Student's unexpected rise as a researcher leads to critical new insights into HPV

Ominous false alarm in the kidney

MSK Research Highlights, October 31, 2025

[Press-News.org] Tiny nanocubes help scientists tell left from right
New method could improve drug development, optical sensors and more