(Press-News.org) CHAPEL HILL, N.C. -- Researchers have pinpointed the role of a gene known as Arl13b in guiding the formation and proper placement of neurons in the early stages of brain development. Mutations in the gene could help explain brain malformations often seen in neurodevelopmental disorders.
The research, led by a team at the University of North Carolina School of Medicine, was published June 30 in the journal Nature Neuroscience.
"We wanted to get a better sense of how the cerebral cortex is constructed," said senior study author Eva Anton, PhD, a professor in the Department of Cell Biology and Physiology and a member of the Neuroscience Center at UNC. "The cells we studied — radial glial cells — provide a scaffolding for the formation of the brain by making neurons and guiding them to where they have to go. This is the first step in the formation of functional neuronal circuitry in the brain. This study gives us new information about the mechanisms involved in that process."
The researchers became interested in the Arl13b gene because of its expression in a part of the cell called primary cilium and its association with a rare neurological disorder known as Joubert syndrome. The syndrome is characterized by brain malformations and autism like features.
"In addition to helping us understand an important cellular mechanism involved in normal brain development, this study may offer an explanation for some of the malformations seen in Joubert syndrome patients," said Anton. Although there is no immediate clinical application for these patients, the study does help illuminate the factors behind the disease. "It shows what may have gone wrong in some of those patients that led to the malformations," said Anton.
The cerebral cortex, the brain's "gray matter," is responsible for higher-order functions such as memory and consciousness. Like the scaffolding builders use to move people and materials during construction, radial glial cells provide an instructive matrix to create the basic structural features of the cerebral cortex. Mistakes in the formation and development of radial glial cells can translate into structural problems in the brain as it develops, said Anton.
Both mice and humans have the Arl13b gene. The researchers generated a series of mice with mutations on the Arl13b gene at different developmental stages to track the mutations' effects on brain development. They discovered that the gene is crucial to the radial glial cells' ability to sense signals through an appendage called the primary cilium. Without this signaling capability, the radial glia were unable to organize into an instructive scaffold capable of orchestrating the orderly formation of cerebral cortex. "The cilia in these cells play an important role in the initial setup of this scaffolding," said Anton. "Without a functioning Arl13b gene, the cells were not able to determine polarity and formed haphazardly. As a result, they formed a malformed cerebral cortex with ectopic clusters of neurons, instead of the orderly layers of neurons with appropriate connectivity that would be expected, in the developing brain.
INFORMATION:
Co-authors include Holden Higginbotham, Jiami Guo, Yukako Yokota, Jingjun Li, Nisha Verma, Vladimir Gukkasyan and Joshua Hirt from UNC, and Nicole Umberger, Chen-Ying Su, and Tamara Caspary of Emory University.
UNC researchers discover a gene's key role in building the developing brain's scaffolding
2013-07-02
ELSE PRESS RELEASES FROM THIS DATE:
Gene therapy cures a severe paediatric neurodegenerative disease in animal models
2013-07-02
Sanfilippo Syndrome type A, or Mucopolysaccharidosis type IIIA (MPSIIIA), is a neurodegenerative disease caused by mutations in the gene that encodes the enzyme sulfamidase. Mutations in this gene lead to deficiencies in the production of the enzyme, which is essential for the breakdown of substances known as glycosaminoglicans. If these substances are not broken down, they accumulate in the cells and cause neuroinflammation and organ dysfunction, mainly in the brain, but also in other parts of the body. Children born with this mutation are diagnosed from the age of 4 or ...
GIS scientists discover molecular communication network in human stem cells
2013-07-02
Scientists at A*STAR's Genome Institute of Singapore (GIS) and the Max Planck Institute for Molecular Genetics (MPIMG) in Berlin (Germany) have discovered a molecular network in human embryonic stem cells (hESCs) that integrates cell communication signals to keep the cell in its stem cell state. These findings were reported in the June 2013 issue of Molecular Cell.
Human embryonic stem cells have the remarkable property that they can form all human cell types. Scientists around the world study these cells to be able to use them for medical applications in the future. ...
Fishing in the sea of proteins
2013-07-02
To convert a gene into a protein, a cell first crafts a blueprint out of RNA. One of the main players in this process has been identified by researchers led by Dr. Jessica Jacobs at the Ruhr-Universität Bochum. The team "fished" a large complex of proteins and RNA, which is involved in the so-called splicing, from the chloroplasts of the green alga Chlamydomonas reinhardtii. This cuts non-coding regions out of the messenger RNA, which contains the protein blueprint. "For the first time, we have established the exact composition of an unknown splicing complex of the chloroplasts", ...
Changes in hyaluronan metabolism key in adaptation of keratinocytes to radiation injury
2013-07-02
As the outermost layer of skin, epidermis is crucial in forming a permeability barrier and protection against various environmental agents. Thus, investigating the biology of its most important cell type, the keratinocyte, is key to understanding the effects of solar ultraviolet radiation in skin, and helps design effective means of protection against excessive exposure. It has already previously been shown with both cell culture and in vivo animal models that UV irradiation increases the expression of hyaluronan, which is an important carbohydrate of the extracellular ...
Cadaver study may help clinicians identify patients who can skip ACL reconstruction
2013-07-02
A study by researchers at Hospital for Special Surgery has provided the first evidence that the shape of a person's knee could be a factor in the decision of whether a patient should undergo anterior cruciate ligament (ACL) reconstruction after an ACL tear. The study is published online ahead of print in the Proceedings of the Institution of Mechanical Engineering.
"This is the first study to show that after your ACL is ruptured, the changes in the mechanics of the knee can really be affected by the shape of the knee," said Suzanne Maher, Ph.D., associate director of ...
Fidaxomicin in Clostridium difficile infection: added benefit not proven
2013-07-02
The antibiotic fidaxomicin (trade name: Dificlir) has been approved in Germany since December 2011 for the treatment of adults who have diarrhoea caused by Clostridium difficile. In an early benefit assessment pursuant to the "Act on the Reform of the Market for Medicinal Products" (AMNOG), the German Institute for Quality and Efficiency in Health Care (IQWiG) examined the added benefit of fidaxomicin in comparison with current standard therapy. According to this, there is currently no proof of an added benefit. The manufacturer did not submit any studies on non-severe ...
Abiraterone: Hint of considerable added benefit
2013-07-02
Abiraterone acetate (abiraterone for short, trade name: Zytiga) has been approved in Germany since December 2012 for men with metastatic prostate cancer that is not responsive to hormone blockade, who only have mild symptoms or so far none at all, and in whom chemotherapy is not yet indicated. In an early benefit assessment pursuant to the "Act on the Reform of the Market for Medicinal Products" (AMNOG), the German Institute for Quality and Efficiency in Health Care (IQWiG) examined whether abiraterone offers an added benefit compared with the present standard therapy. ...
The ribosome -- a new target for antiprion medicines
2013-07-02
New research results from Uppsala University, Sweden, show that the key to treating neurodegenerative prion diseases such as mad cow disease and Creutzfeldt-Jakob disease may lie in the ribosome, the protein synthesis machinery of the cell. The results were recently published in the Journal of Biological Chemistry.
Prion diseases are fatal neurodegenerative diseases caused by misfolding of prion proteins. Examples of prion diseases are scrapie in sheep, mad cow disease and Creutzfeldt-Jakob disease in human.
What triggers misfolding of the prion proteins to the amyloid ...
Companies look at wrong things when using facebook to screen job applicants
2013-07-02
Employers are increasingly using Facebook to screen job applicants and weed out candidates they think have undesirable traits. But a new study from North Carolina State University shows that those companies may have a fundamental misunderstanding of online behavior and, as a result, may be eliminating desirable job candidates.
Researchers tested 175 study participants to measure the personality traits that companies look for in job candidates, including conscientiousness, agreeableness and extraversion. The participants were then surveyed on their Facebook behavior, allowing ...
Corn yield prediction model uses simple measurements at a specific growth stage
2013-07-02
The ability to predict corn yields would benefit farmers as they plan the sale of their crops and biofuel industries as they plan their operations. A new study published in the July-August issue of Agronomy Journal describes a robust model that uses easily obtained measurements, such as plant morphology and precipitation, collected specifically at the silking growth stage of the plant. The new model could help both growers and industry maximize their profits and efficiency.
Forecasting crop yield can be extremely useful for farmers. If they have an idea of the amount ...