(Press-News.org) In a study that could change the way scientists view the process of protein production in humans, University of Chicago researchers have found a single gene that encodes two separate proteins from the same sequence of messenger RNA.
Published online July 3 in Cell, their finding elucidates a previously unknown mechanism in human gene expression and opens the door for new therapeutic strategies against a thus-far untreatable neurological disease.
"This is the first example of a mechanism in a higher organism in which one gene creates two proteins from the same mRNA transcript, simultaneously," said Christopher Gomez, MD, PHD, professor and chairman of the Department of Neurology at the University of Chicago, who led the study. "It represents a paradigm shift in our understanding of how genes ultimately encode proteins."
The human genome contains a similar number of protein-coding genes as the nematode worm (roughly 20,000). This disparity between biological complexity and gene count partially can be explained by the fact that individual genes can encode multiple protein variants via the production of different sequences of messenger RNA (mRNA)—short, mass-produced copies of genetic code that guide the creation of myriad cellular machinery.
Gomez and his team, which included first author Xiaofei Du, MD, discovered a new layer of complexity in this process of gene expression as they studied spinocerebellar ataxia type-6 (SCA6), a neurodegenerative disease that causes patients to slowly lose coordination of their muscles and eventually their ability to speak and stand. Human genetic studies identified its cause as a mutation in CACNA1A—a gene that encodes a calcium channel protein important for nerve cell function—resulting in extra copies of the amino acid glutamine.
However, although the gene, mutation and dysfunction are known, attempts to find the biological mechanism of the disease proved inconclusive. Calcium channel proteins with the mutation still seemed to function normally.
Suspecting another factor at play, Gomez and his team instead focused on α1ACT, a poorly understood, free-floating fragment of the CACNA1A calcium channel protein known to express extra copies of glutamine in SCA6 cells. The researchers first looked at its origin and found that, to their surprise, α1ACT was generated from the same mRNA sequence as the CACNA1A calcium channel.
For the first time, they had evidence of a human gene that coded one strand of mRNA that coded two separate, structurally distinct proteins. This occurred due to the presence of a special sequence in the mRNA known as an internal ribosomal entry site (IRES). Normally found at the beginning of an mRNA sequence, this IRES site sat in the middle, creating a second location for ribosomes, the cellular machines that read mRNA, to begin the process of protein production.
Looking at function, Gomez and his team found that normal α1ACT acted as a transcription factor and enhanced the growth of specific brain cells. Importantly, mutated α1ACT appeared to be toxic to nerve cells in a petri dish, and caused SCA6-like symptoms in an animal model.
The team hopes to discover other examples of human genes with similar IRES sites to better understand the implications of this new class of "bifunctional" genes on our basic biology. For now, they are focused on leveraging their findings toward helping SCA6 patients and already are working on ways to silence mutated α1ACT.
"We discovered this genetic phenomenon in the pursuit of a disease cause and, in finding it, immediately have a potential strategy for developing preclinical tools to treat that disease," Gomez said. "If we can target the IRES and inhibit production of this mutant form of α1ACT in SCA6, we may be able to stop the progression of the disease."
###
This work was supported by the National Ataxia Foundation, the National Organization of Rare Diseases and the National Institute of Neurological Disorders and Stroke.
New mechanism for human gene expression discovered
Study results could lead to a therapy for at least one neurological disease
2013-07-03
ELSE PRESS RELEASES FROM THIS DATE:
Scientists identify gene that controls aggressiveness in breast cancer cells
2013-07-03
CAMBRIDGE, Mass. (July 3, 2013) – In a discovery that sheds new light on the aggressiveness of certain breast cancers, Whitehead Institute researchers have identified a transcription factor, known as ZEB1, that is capable of converting non-aggressive basal-type cancer cells into highly malignant, tumor-forming cancer stem cells (CSCs). Intriguingly, luminal breast cancer cells, which are associated with a much better clinical prognosis, carry this gene in a state in which it seems to be permanently shut down.
The researchers, whose findings are published this week ...
Altered protein shapes may explain differences in some brain diseases
2013-07-03
It only takes one bad apple to spoil the bunch, and the same may be true of certain proteins in the brain. Studies have suggested that just one rogue protein (in this case, a protein that is misfolded or shaped the wrong way) can act as a seed, leading to the misfolding of nearby proteins. According to an NIH-funded study, various forms of these seeds — originating from the same protein — may lead to different patterns of misfolding that result in neurological disorders with unique sets of symptoms.
"This study has important implications for Parkinson's disease and other ...
Tiny tweezers allow precision control of enzymes
2013-07-03
Tweezers are a handy instrument when it comes to removing a splinter or plucking an eyebrow.
In new research, Hao Yan and his colleagues at Arizona State University's Biodesign Institute describe a pair of tweezers shrunk down to an astonishingly tiny scale. When the jaws of these tools are in the open position, the distance between the two arms is about 16 nanometers—over 30,000 times smaller than a single grain of sand.
The group demonstrated that the nanotweezers, fabricated by means of the base-pairing properties of DNA, could be used to keep biological molecules ...
Study confirms adding chemotherapy to surgery improves survival in advanced gastric cancer
2013-07-03
Lugano-Barcelona, 3 July 2013 -- For patients with advanced gastric cancer, treatment with chemotherapy after surgery can reduce the risk of cancer related death by 34% over five years compared to surgery alone, researchers said at the 15th ESMO World Congress in Gastrointestinal Cancer.
At the meeting Prof Sung Hoon Noh, a gastric surgeon from Yonsei University College of Medicine, Korea, presented 5-year follow-up from the phase III CLASSIC trial, which added combination chemotherapy to a standard surgical procedure called D2 gastrectomy. The chemotherapy regimen studied ...
Study challenges long-held assumption of gene expression in embryonic stem cells
2013-07-03
CAMBRIDGE, Mass. (July 3, 2013) – Whitehead Institute researchers have determined that the transcription factor Nanog, which plays a critical role in the self-renewal of embryonic stem cells, is expressed in a manner similar to other pluripotency markers. This finding contradicts the field's presumptions about this important gene and its role in the differentiation of embryonic stem cells.
A large body of research has reported that Nanog is allelically regulated—that is, only one copy of the gene is expressed at any given time—and fluctuations in its expression are responsible ...
New papers identify a microRNA that drives both cancer onset and metastasis
2013-07-03
BOSTON -- A mere 25 years ago, noncoding RNAs were considered nothing more than "background noise" in the overall genomic landscape. Now, two new studies reveal that one of these tiny noncoding molecules – microRNA-22 – plays an outsized role in two types of cancer.
Reported on-line today in the journals Cell and Cell Stem Cell, the two papers demonstrate in mouse models that miR-22 drives both the onset and spread of breast cancer, as well as the onset of blood cancer. The findings, led by investigators at Beth Israel Deaconess Medical Center (BIDMC), further suggest ...
Hot flashes take heavier toll on women with HIV
2013-07-03
CLEVELAND, Ohio (July 3, 2013)—Women with HIV are living longer, so more are entering menopause. As they do, they suffer more severe hot flashes than women without HIV, and their hot flashes take a heavier toll on their quality of life and daily functioning, found researchers at Massachusetts General Hospital. Their study was published online today in Menopause, the journal of The North American Menopause Society.
That toll has the potential to undermine an already shaky foundation for their lives, compromising their health, HIV treatment, and ability to abstain from ...
Immune-boosting colorectal cancer drug shows promise
2013-07-03
Lugano-Barcelona-- New data on an emerging treatment that aims to fight colorectal cancer by stimulating the immune system have been presented at the ESMO 15th World Congress on Gastrointestinal Cancer.
The findings confirm the biological action of the drug called MGN1703 and suggest it may be possible to identify which gastrointestinal cancer patients will benefit most from the treatment, reported Prof Hans-Joachim Schmoll from Martin Luther University, Halle, Germany.
MGN1703 is a small DNA molecule recognised by a receptor --called toll-like receptor 9-- that is ...
Lifesaving HIV treatment could reach millions more people following landmark study
2013-07-03
Millions more people could get access to life-saving HIV drug therapy, following a landmark study led by Australian researchers based at the Kirby Institute at the University of New South Wales (UNSW).
The researchers have found a lower daily dose of an important HIV drug therapy is safe and as effective in suppressing the virus as the standard recommended dose.
The findings have been presented at the International AIDS Society Conference in Kuala Lumpur, Malaysia.
"This has the potential to affect the treatment of millions of HIV positive people," says UNSW Professor ...
After millennia of mining, copper nowhere near 'peak'
2013-07-03
New research shows that existing copper resources can sustain increasing world-wide demand for at least a century, meaning social and environmental concerns could be the most important restrictions on future copper production.
Researchers from Monash University have conducted the most systematic and robust compilation and analysis of worldwide copper resources to date. Contrary to predictions estimating that supplies of this important metal would run out in around 30 years, the research has found there are plenty of resources within the reach of current technologies. ...
LAST 30 PRESS RELEASES:
Quantum machine offers peek into “dance” of cosmic bubbles
How hungry fat cells could someday starve cancer to death
Breakthrough in childhood brain cancer research could heal treatment-resistant tumors, keep them in remission
Research discovery halts childhood brain tumor before it forms
Scientists want to throw a wrench in the gears of cancer’s growth
WSU researcher pioneers new study model with clues to anti-aging
EU awards €5 grant to 18 international researchers in critical raw materials, the “21st century's gold”
FRONTIERS launches dedicated call for early-career science journalists
Why do plants transport energy so efficiently and quickly?
AI boosts employee work experiences
Neurogenetics leader decodes trauma's imprint on the brain through groundbreaking PTSD research
High PM2.5 levels in Delhi-NCR largely independent of Punjab-Haryana crop fires
Discovery of water droplet freezing steps bridges atmospheric science, climate solutions
Positive emotions plus deep sleep equals longer-lasting perceptual memories
Self-assembling cerebral blood vessels: A breakthrough in Alzheimer’s treatment
Adverse childhood experiences in firstborns associated with poor mental health of siblings
Montana State scientists publish new research on ancient life found in Yellowstone hot springs
Generative AI bias poses risk to democratic values
Study examines how African farmers are adapting to mountain climate change
Exposure to air pollution associated with more hospital admissions for lower respiratory infections
Microscopy approach offers new way to study cancer therapeutics at single-cell level
How flooding soybeans in early reproductive stages impacts yield, seed composition
Gene therapy may be “one shot stop” for rare bone disease
Protection for small-scale producers and the environment?
Researchers solve a fluid mechanics mystery
New grant funds first-of-its-kind gene therapy to treat aggressive brain cancer
HHS external communications pause prevents critical updates on current public health threats
New ACP guideline on migraine prevention shows no clinically important advantages for newer, expensive medications
Revolutionary lubricant prevents friction at high temperatures
Do women talk more than men? It might depend on their age
[Press-News.org] New mechanism for human gene expression discoveredStudy results could lead to a therapy for at least one neurological disease