PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Study analyzes dynamical properties in antibiotic resistance enzyme

Global structural properties have changed across bacterial families without putting limits on new antibiotic resistance

2013-07-19
(Press-News.org) Antibiotic-resistant bacteria have been emerging at an alarming rate. In some of the scariest of these pathogens, the mechanism responsible for the bacteria's ability to defeat antibiotics is a complex protein molecule embedded in the bacterial cell wall -- the enzyme β-lactamase.

The rapid evolution of β-lactamase is the key factor responsible for the growing antibiotic resistance of some of the most terrifying pathogenic bacteria on the planet – bacteria which are becoming rapidly immune to most, if not all, of our drugs. We can trace the genetic changes responsible, but actually understanding what those changes are doing to the properties of the hugely complex molecule is another matter.

The enzyme and its antibiotic-destroying effects are not new. β-lactamase has evolved over the millennia as a defensive weapon, a molecular machine for chopping up chemical weapons deployed in the wars bacteria fight against each other – antibacterial weapons that we have since discovered and call "antibiotics." Because this chemical warfare has gone on for billions of years, the protein can be found in subtle variants in many bacteria.

Some of the variations in β-lactamase are ancient, but some are very recent, as the molecule has experienced intense evolutionary pressure in the last century due to human over-use of antibiotic compounds. However, it is still somewhat of mystery what specific structural or chemical changes in the protein have allowed its recent rapid changes in counter-antibiotic capability.

Now, new research appears to have uncovered the mechanisms involved, both in the protein's long-term evolution and in the specific changes responsible for the rapid development of resistance against antibiotics. In a finding published July 18 in the online edition of PLOS Computational Biology, University of North Carolina at Charlotte researchers Dennis R. Livesay, Deeptak Verma, and Donald J. Jacobs show significant evolution in the structural characteristics and physiochemical properties of β-lactamase across bacterial families, but also find that these evolutionary characteristics do not appear to be specifically related to different versions of antibiotic resistance.

Instead, the researchers found that relatively minor changes in the structure of the enzyme's active site – the area of the protein that couples with the antibiotic molecules and disables them – are capable, independent of global changes to the protein structure, of adapting the enzyme to new antibiotics. Though it was not the result the researchers were hoping to discover, the finding does have large implications.

"It's actually a cautionary result because it highlights that these mutations are not being restricted too much by the global properties of the enzyme," said Livesay, a faculty member in bioinformatics. Livesay notes that different families of bacteria have evolved significant physiochemical differences in their β-lactamase molecules, but that these structural differences have allowed resistance to the same medically administered antibiotics to develop nonetheless.

Livesay's team studied the structure and properties of class-A β-lactamase proteins, one of four "families" of the protein that have evolved in bacteria and other organisms. They analyzed about a dozen proteins – those in the group whose structures have previously been described – and defined the intricate physiochemical properties of each of the proteins' structures, while comparing the individual protein structure characteristics they discovered with the phylogenetic trees of the bacteria they came from.

Central to their approach was the Distance Constraint Model (DCM), a program developed by Jacobs, a UNC Charlotte physicist, and Livesay. The DCM allows detailed but also relatively fast analysis of the protein structure's physical properties. The DCM's efficient but accurate structural analysis allowed the researchers to make complex structural comparisons between many different (but related) molecules – an analysis that would otherwise require vast amounts of processing power. The analysis allowed the researchers to pinpoint specific differences between the proteins, such as differing amounts of rigidity/flexibility in specific parts of the protein's complex structure.

"Biology is an inherently comparative science. From Darwin's finches to modern molecular biology, we frequently learn most through comparisons. In this work, we extend the comparison paradigm to computational biophysics by leveraging the speed and accuracy of the DCM." Livesay said.

'We started by asking a very simple question: do the physical and chemical properties vary in a way that directly reflects the divergence of the family?" Livesay said. "What we did was calculate these properties and ask if those in the same evolutionary outgroups have similar properties and are those in different outgroups likely to have different properties?"

"We did some simple calculations and we proved conclusively that the physiochemical properties are varying in statistically significant way with the phylogeny. This is really cool," he noted, "because it demonstrates that evolution is manipulating chemistry in a straightforward way."

The next step was for the researchers to compare the genetically linked structural properties of the proteins to different varieties of antibiotic resistance in the bacteria. Livesay notes that antibiotic resistance in bacteria has long been studied and, in fact, used as an alternative form of classification.

"We wanted to see if we could link the properties we calculate to these activities. And it turns out, No, we can't," Livesay said. "Frankly, I was a little disappointed when we first saw that. What's happening is that within a lineage the global properties change very little, but the severity of their response to antibiotics can be huge."

Though the properties of the protein vary from one bacterial family to another, the researchers concluded that the entire β-lactamase group has general characteristics that prevent the protein's basic physiochemical properties from affecting the enzyme active site, where antibiotics are attacked.

"This enzyme is a rock," Livesay noted. "It's atypically rigid -- much more rigid than most proteins. So how does the enzyme become active against an antibiotic it wasn't active against before? Well it had some chemical groups that were simply in the way, meaning steric clashes would restrict what antibiotics could fit in the active site of the enzyme."

The implication is that the general rigidity of β-lactamase allows relatively simple genetic changes – changes affecting only the structure of the active site – to cause new antibiotic resistance without otherwise affecting the behavior of the protein.

"It doesn't require any wholesale change in the protein's global properties to manipulate this local chemistry, so it turns out that these mutations are evolutionarily cheap," Livesay said. "You can evolve these slight changes in the active site against any background of the global properties. A very small number of gene changes and a very small number of amino acid changes in the protein are involved."

Since the larger structure of the protein does not interact with the behavior of the active site, Livesay stresses, it means that the same kinds of antibiotic resistance can re-occur across a broad range of bacteria from different families, though they have evolved differences in β-lactamase structure.

The ease with which the enzyme can evolve and adapt to new antibiotics, combined with the fact that some bacteria carry the β-lactamase gene on a plasmid (a separate ring of genetic material) that can be swapped with even unrelated bacteria, and the huge selective pressure caused by human overuse of antibiotics, all combine to create our current nightmare of widespread, rapidly developing antibiotic resistance.

According to Livesay, the current finding thus has larger implications.

"Our findings on class A β-lactamases are actually a much more terrifying result than one might expect," he said. "It highlights that not only are their genes on mobile elements that are being transferred and shared, it turns out that these mutations are not being constricted too much by the physiochemical properties of the enzyme. That is presumably also contributing to the fact that β-lactamases in general have adapted so quickly."

Going forward, the team is currently analyzing the β-lactamase genes that lead to carbapenem-resistant Enterobacteriaceae (CRE) infections. "Class B β-lactamases are the most dire, the most scary," Livesay said. "These genes are highly mobile, on mobile elements and they are plastic and very active. They can be resistant to almost all the antibiotics we have. The enzyme can recognize in the active site all these different things, under different pH's. It's extraordinarily promiscuous. As such, CRE infections are very difficult to treat, leading to mortality estimates as high as 50% for infections that used to be treated with penicillin."



INFORMATION:

This research is funded under grant number GM101570 from the National Institutes of Health. The complete paper can be seen online at http://www.ploscompbiol.org .

Source: Dennis Livesay, 704-687-7995, drlivesa@uncc.edu



ELSE PRESS RELEASES FROM THIS DATE:

Snow in an infant solar system

2013-07-19
Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA - http://www.eso.org/alma) have taken the first ever image of the snow line in an infant solar system. On Earth, snow lines form at high altitudes where falling temperatures turn the moisture in the air into snow. This line is clearly visible on a mountain, where the snow-capped summit ends and the rocky face begins. The snow lines around young stars form in a similar way, in the distant, colder reaches of the dusty discs from which solar systems form. Starting from the star and moving outwards, ...

How Mars' atmosphere got so thin: New insights from Curiosity

2013-07-19
ANN ARBOR—New findings from NASA's Curiosity rover provide clues to how Mars lost its original atmosphere, which scientists believe was much thicker than the one left today. "The beauty of these measurements lies in the fact that these are the first really high-precision measurements of the composition of Mars' atmosphere," said Sushil Atreya, professor of atmospheric, oceanic and space sciences at the University of Michigan. Atreya is co-author of two related papers published in the July 19 issue of Science, and co-investigator on Curiosity's Sample Analysis at Mars ...

A snow line in an infant solar system: Astronomers take first images

2013-07-19
ANN ARBOR—Like the elevation in the Rocky Mountains where the snow caps begin, a snow line in a solar system is the point where falling temperatures freeze and clump together water or other chemical compounds that would otherwise be vapor. Astronomers believe snow lines in space serve a vital role in forming planets because frozen moisture can help dust grains stick together. Astronomers have, for the first time, directly imaged a snow line at another star. Using the new Atacama Larger Millimeter/submillimeter Array (ALMA) telescope in Chile, they obtained radio-wavelength ...

New research suggests that gingival stem cells can be used in tissue regeneration

2013-07-19
Alexandria, Va., USA – Today, the International and American Associations for Dental Research (IADR/AADR) published a paper titled "Gingivae Contain Neural-crest- and Mesoderm-derived Mesenchymal Stem Cells." The paper, written by lead author Songtao Shi, Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, USA, is published in the OnlineFirst portion of the IADR/AADR Journal of Dental Research. Gingivae represent a unique soft tissue that serves as a biological barrier to cover the oral cavity side of ...

Good vibrations: Mediating mood through brain ultrasound

2013-07-19
University of Arizona researchers have found in a recent study that ultrasound waves applied to specific areas of the brain appear able to alter patients' moods. The discovery has led the scientists to conduct further investigations with the hope that this technique could one day be used to treat conditions such as depression and anxiety. Dr. Stuart Hameroff, professor emeritus of the UA's departments of anesthesiology and psychology and director of the UA's Center for Consciousness Studies, is lead author on the first clinical study of brain ultrasound, which was published ...

Facebook for molecules

2013-07-19
Social media has expanded to reach an unlikely new target: molecules. Scientists at the National Institute of Standards and Technology (NIST) have created networks of molecular data similar to Facebook's recently debuted graph search feature. While graph search would allow Facebook users to find all their New York-living, beer-drinking buddies in one quick search, the NIST-designed networks could help scientists rapidly sift through enormous chemical and biological data sets to find substances with specific properties, for example all 5-ring chemicals with an affinity for ...

A secret to making macrophages

2013-07-19
VIDEO: This is a iime-lapse movie of blood progenitor cells dividing and differentiating in culture. The brightness of green fluorescence indicates the amount of the regulatory protein PU.1 present in each... Click here for more information. Biologists at the California Institute of Technology (Caltech) have worked out the details of a mechanism that leads undifferentiated blood stem cells to become macrophages—immune cells that attack bacteria and other foreign pathogens. ...

HIV/AIDS vaccines: Defining what works

2013-07-19
Designing an effective HIV/AIDS vaccine is something of a paradox: a good vaccine would be safe and look enough like HIV to kick-start the immune system into neutralizing the virus – but the problem is that this is exactly what the human immune system has trouble doing even when it's exposed to the real thing. Now a team of researchers led by scientists at The Scripps Research Institute in La Jolla, Calif. has developed a strategy for inducing a key part of an effective immune response to HIV. By tracing the evolution of HIV-recognizing molecules called antibodies taken ...

Unusual material expands dramatically under pressure

2013-07-19
If you squeeze a normal object in all directions, it shrinks in all directions. But a few strange materials will actually grow in one dimension when compressed. A team of chemists has now discovered a structure that takes this property to a new level, expanding more dramatically under pressure than any other known material. The finding could lead to new kinds of pressure sensors and artificial muscles. Andrew Cairns, a graduate student at the University of Oxford and a member of the research team, will discuss the new material and its applications at the American Crystallographic ...

RI Hospital: Caregivers of those with dementia may benefit from tailored interventions

2013-07-19
PROVIDENCE, R.I. – Rhode Island Hospital researchers have found that multiple factors contribute to the burden felt by caregivers of people living with Alzheimer's and other forms of dementia. These factors include the direct impact of providing care upon the caregivers' lives, guilt, and frustration or embarrassment. The study is published online in advance of print in American Journal of Geriatric Psychiatry. The study, conducted by Beth A. Springate, Ph.D, and Geoffrey Tremont, Ph.D, of the division of neuropsychology in the department of psychiatry at Rhode Island ...

LAST 30 PRESS RELEASES:

New register opens to crown Champion Trees across the U.S.

A unified approach to health data exchange

New superconductor with hallmark of unconventional superconductivity discovered

Global HIV study finds that cardiovascular risk models underestimate for key populations

New study offers insights into how populations conform or go against the crowd

Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials

WashU researchers map individual brain dynamics

Technology for oxidizing atmospheric methane won’t help the climate

US Department of Energy announces Early Career Research Program for FY 2025

PECASE winners: 3 UVA engineering professors receive presidential early career awards

‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions

MSU researcher’s breakthrough model sheds light on solar storms and space weather

Nebraska psychology professor recognized with Presidential Early Career Award

New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration

Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins

From lab to field: CABBI pipeline delivers oil-rich sorghum

Stem cell therapy jumpstarts brain recovery after stroke

Polymer editing can upcycle waste into higher-performance plastics

Research on past hurricanes aims to reduce future risk

UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology

Panorama of our nearest galactic neighbor unveils hundreds of millions of stars

A chain reaction: HIV vaccines can lead to antibodies against antibodies

Bacteria in polymers form cables that grow into living gels

Rotavirus protein NSP4 manipulates gastrointestinal disease severity

‘Ding-dong:’ A study finds specific neurons with an immune doorbell

A major advance in biology combines DNA and RNA and could revolutionize cancer treatments

Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor

NIH to lead implementation of National Plan to End Parkinson’s Act

Growth of private equity and hospital consolidation in primary care and price implications

Online advertising of compounded glucagon-like peptide-1 receptor agonists

[Press-News.org] Study analyzes dynamical properties in antibiotic resistance enzyme
Global structural properties have changed across bacterial families without putting limits on new antibiotic resistance