PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

For a healthy brain, don't let the trash pile up

NIH-funded study finds that quickly clearing away damaged proteins may help prevent neurodegenerative disorders

2013-07-22
(Press-News.org) Recycling is not only good for the environment, it's good for the brain. A study using rat cells indicates that quickly clearing out defective proteins in the brain may prevent loss of brain cells.

Results of a study in Nature Chemical Biology suggest that the speed at which damaged proteins are cleared from neurons may affect cell survival and may explain why some cells are targeted for death in neurodegenerative disorders. The research was supported by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

One of the mysteries surrounding neurodegenerative diseases is why some nerve cells are marked for destruction whereas their neighbors are spared. It is especially puzzling because the protein thought to be responsible for cell death is found throughout the brain in many of these diseases, yet only certain brain areas or cell types are affected.

In Huntington's disease and many other neurodegenerative disorders, proteins that are misfolded (have abnormal shapes), accumulate inside and around neurons and are thought to damage and kill nearby brain cells. Normally, cells sense the presence of malformed proteins and clear them away before they do any damage. This is regulated by a process called proteostasis, which the cell uses to control protein levels and quality.

In the study, Andrey S. Tsvetkov and his colleagues from the University of California, San Francisco (UCSF) and Duke University, Durham, N.C., showed that differences in the rate of proteostasis may be the clue to understanding why certain nerve cells die in Huntington's, a genetic brain disorder that leads to uncontrolled movements and death.

To measure how quickly proteins are cleared away from cells, the researchers developed a new technique called optical pulse-labeling, allowing them to follow specific proteins in individual living cells. To test the technique, they grew brain cells in a dish and turned on Dendra2, a photoswitchable protein that glows from green to red after being hit by a specific type of light. Both the red and green glow can be followed until the protein is cleared from the cell. In this way, the researchers could track the lifetime of newly produced Dendra2 (which glows green) and older, photoswitched Dendra2 (which glows red) until the protein was cleared away from the cell.

"Before this new technique, there was no way to look at individual neurons and their capacity to handle proteins. This method provides a real-time readout of how fast proteins are turned over in neurons and gives us a look at some of the mechanisms involved," said Margaret Sutherland, Ph.D., program director at NINDS.

The researchers followed Dendra2 in a set of striatal neurons, which they obtained from rats. The striatum (where striatal neurons are located) is a brain region involved in a number of brain functions including planning movements and is most heavily affected in Huntington's disease. They discovered that the mean lifetime of the protein (how long it remained in the cell) varied three- to fourfold, suggesting that rates of proteostasis were different among individual neurons. In other words, some cells may process an identical protein much slower than others.

Then, the researchers investigated how cells deal with different forms of huntingtin, the protein involved in Huntington's. They fused Dendra2 on the end of a normal or mutant version of huntingtin to track how long the protein remained in cells. The mutant version of huntingtin is longer, and contains three building blocks of the protein repeated an abnormal number of times. These repeats in huntingtin are what cause it to misfold, eventually leading to neuron death and the symptoms of the disease. As predicted, in their experiments, the mutant form of huntingtin caused more rat cells to die than did the normal form of the protein.

The researchers found that the amount of time the mutant protein remained in the cell predicted neuronal survival: shorter mean lifetimes of mutant huntingtin were associated with longer neuronal survival. A shorter mean lifetime indicates that a protein does not remain in the cell for a long time, and that proteostasis is working effectively to clear it away. This suggests that improving proteostasis in Huntington's brains may improve neuronal survival.

To test this idea, the researchers activated Nrf2, a protein known to regulate protein processing. When Nrf2 was turned on, the mean lifetime of huntingtin was shortened, and the neuron lived longer.

"Nrf2 seems like a potentially exciting therapeutic target. It is profoundly neuroprotective in our Huntington's model and it accelerates the clearance of mutant huntingtin," said Dr. Steven Finkbeiner, senior author of the paper.

Although both striatal and cortical neurons are affected by mutant huntingtin, striatal neurons are more susceptible to cell death. The investigators found that striatal neurons were not as effective as cortical neurons in recognizing and clearing away the mutant protein.

"One surprising finding from these experiments was the significance of single cells' ability to clear mutant huntingtin. It turned out that this ability largely predicted their susceptibility, whether that neuron came from the most vulnerable region of the brain – the striatum, or the cortex, which is less vulnerable," said Dr. Finkbeiner. The findings indicate that the toxicity of the damaged proteins may cause neurodegeneration by interfering with the proteostasis system, affecting how quickly they are cleared from neurons.

"The results should remind us that focusing on the disease-causing proteins is only one side of the coin. To understand why some cells die and others are spared, we may need to recognize that there are major, largely unrecognized cell-specific differences in the ways that various types of neurons recognize and dispose of disease-causing proteins," continued Dr. Finkbeiner.

The researchers explored potential mechanisms behind differences in proteostasis. One way that cells normally get rid of proteins is through autophagy — a process in which proteins are packed up into spheres and then broken down. Results in this paper suggested that neurons increased the rate of autophagy when they sensed that the mutant form of huntingtin was accumulating, indicating the autophagy system may be a drug target.

"These findings provide evidence that our brains have powerful coping mechanisms to deal with disease-causing proteins. The fact that some of these diseases don't cause symptoms we can detect until the fourth or fifth decade of life, even when the gene has been present since birth, suggests that those mechanisms are pretty good," said Dr. Finkbeiner.

Future research is needed to determine why coping mechanisms fail as brain cells age and how neurons in the healthy brain keep the proteostasis system functioning.

"New research methods that help us understand how individual neurons function will increase our understanding of central nervous system disorders and help identify new treatments. It is critical to continue working on the methods such as those described in this paper," said Dr. Sutherland.



INFORMATION:

This study was supported by grants from NINDS (R01 3NS039746, 2R01NS045191) and the National Institute on Aging (P01 2AG022074). Additional funding was provided by the Taube/Koret Center, the National Science Foundation (DMS-0914906), the Huntington's Disease Society of America, the Milton Wexler Award, and the Hillblom Foundation.

Reference: Andrey S. Tsvetkov et al. "Proteostasis of Polyglutamine Varies among Neurons and Predicts Neurodegeneration," Nature Chemical Biology, July 21, 2013

For more information about Huntington's disease, please visit: http://www.ninds.nih.gov/disorders/huntington/huntington.htm

NINDS Video: NINDS-supported Researcher Talks About Huntington's Disease Mutation http://youtu.be/4Z16GPvsBLA

NINDS (http://www.ninds.nih.gov) is the nation's leading funder of research on the brain and nervous system. The NINDS mission is to reduce the burden of neurological disease – a burden borne by every age group, by every segment of society, by people all over the world.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.



ELSE PRESS RELEASES FROM THIS DATE:

Program may hold promise for reducing avoidable hospital readmissions

2013-07-22
Recent federal legislation imposes financial penalties on hospitals that experience excessive patient readmissions within 30 days. A new study published today in the Journal of Hospital Medicine looks at the potential of a program designed to improve the discharge process and prevent avoidable rehospitalizations. Developed by the Society of Hospital Medicine, Project BOOST (Better Outcomes by Optimizing Safe Transitions) Mentoring Program focuses on identifying patients at highest risk for readmissions, communicating discharge plans effectively, and ensuring close follow-up ...

To savor the flavor, perform a short ritual first

2013-07-22
Birthday celebrations often follow a formula, including off-key singing, making a birthday wish while blowing out candles, and the ceremonial cutting of the birthday cake. New research suggests that this ritual not only makes the experience more memorable, but might also improve the taste of the cake. The new collection of studies, published in Psychological Science, a journal of the Association for Psychological Science, reveals that the rituals we perform before eating -- even the seemingly insignificant ones -- can actually change our perception of the food we eat. Psychological ...

New report helps clinicians decide when to order vascular laboratory tests

2013-07-20
A new report issued today by the American College of Cardiology (ACC) and developed in collaboration with 10 other leading professional societies provides detailed criteria to help clinicians optimize the appropriate use of certain noninvasive vascular tests when caring for patients with known or suspected disorders of the venous (veins) system. Also included are first-time recommendations for when and how to use these tests to plan for or evaluate dialysis access placement. "Vascular lab testing is central to the care of patients with most peripheral vascular disorders, ...

U of M researchers identify new functions for autoimmune disease 'risk' gene

2013-07-20
MINNEAPOLIS/ST. PAUL (July 19, 2013) – Researchers at the University of Minnesota have identified infection-fighting and inflammation-suppressing functions for a gene associated with human autoimmune disease. The discovery, centered on a gene known as PTPN22, could set into motion new treatment approaches for autoimmune diseases like lupus, rheumatoid arthritis and type 1 diabetes. The key to these advances may lie with a better understanding of how a variant of PTPN22, known as a "risk variant," impacts autoimmune disease development and the behavior of myeloid cells ...

Nighttime heat waves quadruple in Pacific Northwest

2013-07-20
Nighttime heat waves are becoming more frequent in western Washington and Oregon. And if you don't sleep well in hot weather, this might be a good time to buy a fan, since records show that on average heat waves tend to strike around the last week of July. University of Washington research shows that the region west of the Cascades saw only three nighttime heat waves between 1901 and 1980, but that number quadrupled to 12 nighttime heat waves in the three decades after 1980, according to a paper published in the July issue of the Journal of Applied Meteorology and Climatology. ...

Gene mutation in dogs offers clues for neural tube defects in humans

2013-07-20
A gene related to neural tube defects in dogs has for the first time been identified by researchers at the University of California, Davis, and University of Iowa. The researchers also found evidence that the gene may be an important risk factor for human neural tube defects, which affect more than 300,000 babies born each year around the world, according to the U.S. Centers for Disease Control and Prevention. Neural tube defects, including anencephaly and spina bifida, are caused by the incomplete closure or development of the spine and skull. The new findings appear ...

Stem cell discovery furthers research on cell-based therapy and cancer

2013-07-20
Stem-cell researchers at UC San Francisco have found a key role for a protein called BMI1 that may help scientists direct the development of tissues to replace damaged organs in the human body. “Scientists have known that Bmi1 is a central control switch within the adult stem cells of many tissues, including the brain, blood, lung and mammary gland,” said Ophir Klein, MD, PhD, who directs the Craniofacial and Mesenchymal Biology (CMB) Program and serves as chair of the Division of Craniofacial Anomalies at UCSF. “Bmi1 also is a cancer-causing gene that becomes ...

Researchers describe potential for MERS coronavirus to spread internationally

2013-07-20
TORONTO, July 19, 2013—The life-threatening MERS coronavirus that has emerged in the Middle East could spread faster and wider during two international mass gatherings involving millions of people in the next few months, according to researchers who describe the most likely pathways of international spread based upon worldwide patterns of air travel. Researchers led by Dr. Kamran Khan of St. Michael's Hospital encouraged health care providers to learn from the experience of SARS by anticipating rather than reacting to the introduction of MERS in travelers returning from ...

Study finds missing piece of pediatric cancer puzzle

2013-07-20
Most of the time, it takes decades of accumulating genetic errors for a tumor to develop. While this explains the general occurrence of cancer in adults, it leaves a gap in understanding of the cause of pediatric tumors. In a study published in the July issue of the Proceedings of the National Academy of Sciences, researchers found a missing piece of the pediatric cancer puzzle. Changxian Shen, PhD, senior research associate at the Center for Childhood Cancer and Blood Diseases at The Research Institute at Nationwide Children's Hospital, and Peter Houghton, PhD, director ...

Large coronal hole near the sun's north pole

2013-07-20
The European Space Agency/NASA Solar and Heliospheric Observatory, or SOHO, captured this image of a gigantic coronal hole hovering over the sun's north pole on July 18, 2013, at 9:06 a.m. EDT. Coronal holes are dark, low density regions of the sun's outermost atmosphere, the corona. They contain little solar material, have lower temperatures, and therefore, appear much darker than their surroundings. Coronal holes are a typical feature on the sun, though they appear at different places and with more frequency at different times of the sun's activity cycle. The activity ...

LAST 30 PRESS RELEASES:

New superconductor with hallmark of unconventional superconductivity discovered

Global HIV study finds that cardiovascular risk models underestimate for key populations

New study offers insights into how populations conform or go against the crowd

Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials

WashU researchers map individual brain dynamics

Technology for oxidizing atmospheric methane won’t help the climate

US Department of Energy announces Early Career Research Program for FY 2025

PECASE winners: 3 UVA engineering professors receive presidential early career awards

‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions

MSU researcher’s breakthrough model sheds light on solar storms and space weather

Nebraska psychology professor recognized with Presidential Early Career Award

New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration

Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins

From lab to field: CABBI pipeline delivers oil-rich sorghum

Stem cell therapy jumpstarts brain recovery after stroke

Polymer editing can upcycle waste into higher-performance plastics

Research on past hurricanes aims to reduce future risk

UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology

Panorama of our nearest galactic neighbor unveils hundreds of millions of stars

A chain reaction: HIV vaccines can lead to antibodies against antibodies

Bacteria in polymers form cables that grow into living gels

Rotavirus protein NSP4 manipulates gastrointestinal disease severity

‘Ding-dong:’ A study finds specific neurons with an immune doorbell

A major advance in biology combines DNA and RNA and could revolutionize cancer treatments

Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor

NIH to lead implementation of National Plan to End Parkinson’s Act

Growth of private equity and hospital consolidation in primary care and price implications

Online advertising of compounded glucagon-like peptide-1 receptor agonists

Health care utilization and costs for older adults aging into Medicare after the affordable care act

Reading the genome and understanding evolution: Symbioses and gene transfer in leaf beetles

[Press-News.org] For a healthy brain, don't let the trash pile up
NIH-funded study finds that quickly clearing away damaged proteins may help prevent neurodegenerative disorders