(Press-News.org) DURHAM, N.H. –– Space scientists have discovered a massive particle accelerator in the heart of one of the harshest regions of near-Earth space, a region of super-energetic, charged particles surrounding the globe called the Van Allen radiation belts.
Derived by measurements taken by a University of New Hampshire-led instrument on board NASA's Van Allen Probes mission, the findings answer a longstanding question in radiation belt science by showing that the acceleration energy is inside the belts themselves rather than from a source farther away: particles are sped up by a local kick of energy, buffeting them to ever faster speeds like a tetherball circling a pole and gaining momentum with each perfectly timed punch.
The revelation is akin to discovering that hurricanes grow from a local energy source, such as a region of warm ocean water. In the case of the radiation belts, the source is a region of intense electromagnetic waves.
Knowing the location of the acceleration will help scientists make better predictions of space weather conditions in this area of intense radiation that can be risky for Earth-orbiting satellites. The results were published in the July 25, 2013 issue of the online journal Science Express.
"Energetic electrons in the Van Allen radiation belts have been implicated in past satellite failures and so they are often referred to as 'killer electrons'," says UNH astrophysicist Harlan Spence, co-author on the Science paper and principal investigator on the Energetic Particle, Composition, and Thermal Plasma (ECT) instrument suite on board the twin Van Allen Probe spacecraft that made the precision particle measurements.
Adds Spence, "A 50-year mystery of the radiation belts is, where, when and how these electrons are energized. With the Van Allen Probes, we have gone to the very scene of the crime, so to speak, and witnessed the unique, unambiguous fingerprints of a local acceleration process for the first time, revealing the culprit acting to create killer electrons."
The Van Allen belts are two donut-shaped regions of high-energy particles trapped by Earth's magnetic field. At the time of their discovery in the 1950s they were thought to be relatively stable structures, but subsequent observations have shown they are dynamic and mysterious.
For example, sometimes after a solar storm the number of particles (protons and electrons) that populate the belts can increase dramatically and their speeds can approach the speed of light or become "relativistic"– about 186,000 miles per second. However, at other times after similar space weather events, the particles decrease in number and speed, or conditions seem to just stay the same.
"Until the 1990s, we thought that the Van Allen belts were pretty well-behaved and changed slowly," says Geoff Reeves, lead author on the paper and deputy principal investigator on ECT at Los Alamos National Laboratory in Los Alamos, N.M. "With more and more measurements, however, we realized how quickly and unpredictably the radiation belts changed. They are basically never in equilibrium, but in a constant state of change."
In order for scientists to understand such changes better, the Van Allen Probes were designed to fly straight through this intense area of space. When the mission launched in August 2012, it had as one of its top-level goals to understand how particles in the belts are accelerated to ultra-high energies. The goal of the Van Allen Probes mission is to provide understanding – ideally to the point of predictability – of how populations of relativistic electrons and penetrating ions in space form or change in response to variable inputs of energy from the sun and distinguish between two broad possibilities on what speeds up the particles to such amazing speeds: radial acceleration or local acceleration.
In radial acceleration, particles are transported perpendicular to the Earth's magnetic fields from areas of low magnetic strength far away to areas of high magnetic strength nearer Earth. The laws of physics dictate that the particle speeds in this scenario will correlate to the strength of the magnetic field. Thus, the speed would increase as the particles move toward the Earth, like a rock rolling down a hill gathers speed simply due to gravity. The local acceleration theory posits that the particles gain energy from a local energy source more similar to the way hot ocean water spawns a hurricane above it.
The ECT team found they could distinguish between these two theories when they observed a rapid increase in the radiation belts on Oct. 9, 2012. The observations did not show an intensification starting at high altitude and moving gradually toward Earth.
Instead, they showed an increase that started right in the middle of the radiation belts and gradually spread both inward and outward, implying a local acceleration source. The research shows that the local energy comes from electromagnetic waves coursing through the belts.
"These new results go a long way toward answering the questions of where and how particles are accelerated to high energy," says Mona Kessel, Van Allen Probes Program Scientist at NASA Headquarters. "One mission goal has been substantially addressed."
The challenge for scientists now is to determine which waves are at work. Such a task will also be helped along by the Van Allen Probes, which were also carefully designed to measure and distinguish between the numerous types of electromagnetic waves.
###
Co-authors on the Science paper include researchers from the University of Colorado at Boulder, NASA Goddard Flight Center, the Aerospace Corporation, the University of California-Los Angeles, and the University of Iowa.
The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.
The Johns Hopkins University Applied Physics Laboratory built and operates the twin Van Allen Probes for NASA. The Van Allen Probes comprise the second mission in NASA's Living With a Star program, managed by Goddard, to explore aspects of the connected sun-Earth system that directly affect life and society.
For more information about the Van Allen probes, visit: http://www.nasa.gov/vanallenprobes/
For more information on the Energetic Particle, Composition, and Thermal Plasma (ECT) instrument suite, visit: http://rbsp-ect.sr.unh.edu/team.shtml
Image to download: http://www.eos.unh.edu/newsimage/vanallenprobes_lg.jpg
Caption: This artist's conception shows an enhancement in the electron intensity in the heart of the radiation belts where they are accelerated. The reddish area shows the shape that is characteristic of local acceleration and the yellow curve shows the actual observations as obtained by the Van Allen Probes. Image courtesy of Geoff Reeves and Mike Henderson, Los Alamos National Laboratory.
NASA probes detect 'smoking gun' to solve radiation belt mystery
2013-07-26
ELSE PRESS RELEASES FROM THIS DATE:
Miriam researcher helps develop global hepatitis C recommendations for injection-drug users
2013-07-26
(PROVIDENCE, R.I.) – A Miriam Hospital researcher has joined forces with international colleagues to call for new strategies to better manage and improve assessment and treatment for hepatitis C (HCV) infection in individuals who inject drugs.
Lynn E. Taylor, M.D., an HIV specialist focusing on HIV and viral hepatitis coinfection at The Miriam Hospital, was the only American physician invited to join the expert international panel that issued these first-of-its-kind recommendations. They were published online yesterday by the journal Clinical Infectious Diseases, just ...
UI researchers help answer long-standing question about Van Allen radiation belts
2013-07-26
Two University of Iowa researchers and their colleagues have advanced scientists' knowledge of the Earth's Van Allen radiation belts by answering a long-standing question about the belts.
Craig Kletzing and William Kurth of the UI Department of Physics and Astronomy note that since 1958 when UI space physicist James Van Allen discovered the doughnut-shaped bands of intense radiation encircling the Earth, scientists have wondered just how and where electrons trapped within the belts get their ultra-high energies.
In a paper published in the July 25 issue of the online ...
Princeton release: Princeton researcher digs into the contested peanut-allergy epidemic
2013-07-26
The path of the peanut from a snack staple to the object of bans at schools, day care centers and beyond offers important insights into how and why a rare, life-threatening food allergy can prompt far-reaching societal change, according to a Princeton University researcher.
Before 1980, peanut allergies were rarely mentioned in medical literature or the media, said Miranda Waggoner, a postdoctoral researcher at the Office of Population Research in the Woodrow Wilson School of Public and International Affairs. Her article on the subject, "Parsing the peanut panic: The ...
Bacterial blockade
2013-07-26
For decades, doctors have understood that microbes in the human gut can influence how certain drugs work in the body – by either activating or inactivating specific compounds, but questions have long remained about exactly how the process works.
Harvard scientists are now beginning to provide those answers.
In a July 19th paper published in Science, Peter Turnbaugh, a Bauer Fellow at Harvard's Faculty of Arts and Sciences (FAS) Center for Systems Biology, and Henry Haiser, a postdoctoral fellow, identify a pair of genes which appear to be responsible for allowing ...
NASA's Hubble: Galaxies, comets, and stars! Oh my!
2013-07-26
Approaching the sun, Comet ISON floats against a seemingly infinite backdrop of numerous galaxies and a handful of foreground stars. The icy visitor, with its long gossamer tail, appears to be swimming like a tadpole through a deep pond of celestial wonders.
In reality, the comet is much, much closer. The nearest star to the sun is over 60,000 times farther away, and the nearest large galaxy to the Milky Way is over thirty billion times more distant. These vast dimensions are lost in this deep space Hubble exposure that visually combines our view of the universe from ...
NASA's Van Allen Probes discover particle accelerator in the heart of Earth's radiation belts
2013-07-26
Scientists have discovered a massive particle accelerator in the heart of one of the harshest regions of near-Earth space, a region of super-energetic, charged particles surrounding the globe called the Van Allen radiation belts. Scientists knew that something in space accelerated particles in the radiation belts to more than 99 percent the speed of light but they didn't know what that something was. New results from NASA's Van Allen Probes now show that the acceleration energy comes from within the belts themselves. Particles inside the belts are sped up by local kicks ...
NASA's IRIS telescope offers first glimpse of sun's mysterious atmosphere
2013-07-26
The moment when a telescope first opens its doors represents the culmination of years of work and planning -- while simultaneously laying the groundwork for a wealth of research and answers yet to come. It is a moment of excitement and perhaps even a little uncertainty. On July 17, 2013, the international team of scientists and engineers who supported and built NASA's Interface Region Imaging Spectrograph, or IRIS, all lived through that moment. As the spacecraft orbited around Earth, the door of the telescope opened to view the mysterious lowest layers of the sun's atmosphere ...
A faster vessel for charting the brain
2013-07-26
Princeton University researchers have created "souped up" versions of the calcium-sensitive proteins that for the past decade or so have given scientists an unparalleled view and understanding of brain-cell communication.
Reported July 18 in the journal Nature Communications, the enhanced proteins developed at Princeton respond more quickly to changes in neuron activity, and can be customized to react to different, faster rates of neuron activity. Together, these characteristics would give scientists a more precise and comprehensive view of neuron activity.
The researchers ...
Scientists identify key fungal species that help explain mysteries of white nose syndrome
2013-07-26
MADISON, Wis., July 25, 2013 – U.S. Forest Service researchers have identified what may be a key to unraveling some of the mysteries of White Nose Syndrome: the closest known non-disease causing relatives of the fungus that causes WNS. These fungi, many of them still without formal Latin names, live in bat hibernation sites and even directly on bats, but they do not cause the devastating disease that has killed millions of bats in the eastern United States. Researchers hope to use these fungi to understand why one fungus can be deadly to bats while its close relatives are ...
NASA mission involving CU discovers particle accelerator in heart of Van Allen radiation belts
2013-07-26
Using data from a NASA satellite, a team of scientists led by the Los Alamos National Laboratory in New Mexico and involving the University of Colorado Boulder have discovered a massive particle accelerator in the heart of one of the harshest regions of near-Earth space, a region of super-energetic, charged particles surrounding the globe known as the Van Allen radiation belts.
The new results from NASA's Van Allen Probes mission show the acceleration energy is in the belts themselves. Local bumps of energy kick particles inside the belts to ever-faster speeds, much like ...