(Press-News.org) The future is looking good for drugs designed to combat Alzheimer's disease. EPFL scientists have unveiled how two classes of drug compounds currently in clinical trials work to fight the disease. Their research suggests that these compounds target the disease-causing peptides with high precision and with minimal side-effects. At the same time, the scientists offer a molecular explanation for early-onset hereditary forms of Alzheimer's, which can strike as early as thirty years of age. The conclusions of their research, which has been published in the journal Nature Communications, are very encouraging regarding the future of therapeutic means that could keep Alzheimer's disease in check.
Alzheimer's disease is characterized by an aggregation of small biological molecules known as amyloid peptides. We all produce these molecules; they play an essential antioxidant role. But in people with Alzheimer's disease, these peptides aggregate in the brain into toxic plaques – called "amyloid plaques" – that destroy the surrounding neurons.
The process starts with a long protein, "APP", which is located across the neuron's membrane. This protein is cut into several pieces by an enzyme, much like a ribbon is cut by scissors. The initial cut generates a smaller intracellular protein that plays a useful role in the neuron. Another cut releases the rest of APP outside the cell – this part is the amyloid peptide.
For reasons not yet well understood, APP protein can be cut in several different places, producing amyloid peptides that are of varying lengths. Only the longer forms of the amyloid peptide carry the risk of aggregating into plaques, and people with Alzheimer's disease produce an abnormally high number of these.
A favorite Alzheimer's target: gamma secretase
The two next-generation classes of compound that are currently in clinical trials target an enzyme that cuts APP, known as gamma secretase. Until now, our understanding of the mechanism involved has been lacking. But with this work, the EPFL researchers were able to shed some more light on it by determining how the drug compounds affect gamma secretase and its cutting activity.
In most forms of Alzheimer's, abnormally large quantities of the long amyloid peptide 42 – named like that because it contains 42 amino acids – are formed. The drug compounds change the location where gamma secretase cuts the APP protein, thus producing amyloid peptide 38 instead of 42, which is shorter and does not aggregate into neurotoxic plaques.
Compared to previous therapeutic efforts, this is considerable progress. In 2010, Phase III clinical trials had to be abandoned, because the compound being tested inhibited gamma-secretase's function across the board, meaning that the enzyme was also deactivated in essential cellular differentiation processes, resulting to side-effects like in gastrointestinal bleeding and skin cancer.
"Scientists have been trying to target gamma secretase to treat Alzheimer's for over a decade," explains Patrick Fraering, senior author on the study and Merck Serono Chair of Neurosciences at EPFL. "Our work suggests that next-generation molecules, by modulating rather than inhibiting the enzyme, could have few, if any, side-effects. It is tremendously encouraging."
New insights into hereditary forms of the disease
During their investigation, the scientists also identified possible causes behind some hereditary forms of Alzheimer's disease. Early-onset Alzheimer's can appear as early as thirty years of age, with a life expectancy of only a few years. In vitro experiments and numerical simulations show that in early-onset patients, mutations in the APP protein gene modify the way by which APP is cut by the gamma-secretase enzyme. This results in overproduction of amyloid peptide 42, which then aggregates into amyloid plaques.
This research illuminates much that is unknown about Alzheimer's disease. "We have obtained extraordinary knowledge about how gamma secretase can be modulated," explains co-author Dirk Beher, scientific director of Asceneuron, a spin-off of Merck Serono, the pharmaceutical division of Merck KGaA, Darmstadt, Germany. "This knowledge will be invaluable for developing even better targeted drugs to fight the disease."
INFORMATION:
END
Researchers from North Carolina State University have developed a new technique for creating devices out of a water-based hydrogel material that can be patterned, folded and used to manipulate objects. The technique holds promise for use in "soft robotics" and biomedical applications.
"This work brings us one step closer to developing new soft robotics technologies that mimic biological systems and can work in aqueous environments," says Dr. Michael Dickey, an assistant professor of chemical and biomolecular engineering at NC State and co-author of a paper describing ...
By exploiting the full computational power of the Japanese supercomputer, K Computer, researchers from the RIKEN HPCI Program for Computational Life Sciences, the Okinawa Institute of Technology (OIST) in Japan and Forschungszentrum Jülich in Germany have carried out the largest general neuronal network simulation to date.
The simulation was made possible by the development of advanced novel data structures for the simulation software NEST. The relevance of the achievement for neuroscience lies in the fact that NEST is open-source software freely available to every scientist ...
Researchers at the University of Basel have successfully replaced the rare element iodine in copper-based dye-sensitized solar cells by the more abundant element cobalt, taking a step forward in the development of environmentally friendly energy production. The journal «Chemical Communications» has published the results of these so-called Cu-Co cells.
Dye-sensitized solar cells (DSCs) transform light to electricity. They consist of a semiconductor on which a dye is anchored. This colored complex absorbs light and through an electron transfer process produces electrical ...
As any nervous first-time mother will confirm, the initial three months of pregnancy are the most risky time: many expectant women are reluctant to inform their friends or colleagues that they are pregnant until after this period is past. It is less well known that horses suffer from similar problems, with a considerable number of pregnancies failing to progress beyond the first five weeks. The explanation is still unclear but may relate to a problem with the mare's immune system, as the latest work in the group of Christine Aurich in the Vetmeduni's Centre for Artificial ...
New research into the fight against Dengue, an insect-borne tropical disease that infects up to 390 million people worldwide annually, may influence the development of anti-viral therapies that are effective against all four types of the virus.
The findings, led by researchers at the University of Bristol and published in the Journal of Biological Chemistry today [2 August], show for the first time that there may be significant differences in specific properties of the viral proteins for the four dengue virus types.
Due to the effects of globalisation, including increased ...
A study of gene expression led by scientists at the EMBL-European Bioinformatics Institute (EMBL-EBI) and the University of Cambridge has revealed the first steps of evolution in gene regulation in mice. Published in the journal Cell, the research has implications for the study of differences in gene regulation between people.
"We found an impressive amount of variation between these apparently very similar mice in terms of transcription-factor binding, which is an important indicator of gene-regulation activity," says Paul Flicek of EMBL-EBI. "Often you'll see a specific ...
Lixisenatide (trade name: Lyxumia) has been approved in Germany since February 2013 for the treatment of type 2 diabetes mellitus in combination with oral blood-glucose lowering drugs or basal insulin when these, together with diet and exercise, do not provide adequate glycaemic control. In an early benefit assessment pursuant to the Act on the Reform of the Market for Medicinal Products (AMNOG), the German Institute for Quality and Efficiency in Health Care (IQWiG) examined whether this new drug offers an added benefit over the current standard therapy. No such added benefit ...
The clot-inhibiting drug apixaban (trade name: Eliquis) has been approved in Germany since November 2012 for the prevention of embolism and stroke in adults with non-valvular atrial fibrillation. In an early benefit assessment pursuant to the "Act on the Reform of the Market for Medicinal Products" (AMNOG), the German Institute for Quality and Efficiency in Health Care (IQWiG) examined the added benefit of apixaban.
IQWiG found an indication of a considerable added benefit of apixaban for each of two patient groups: Patients who can also be treated with a vitamin K antagonist ...
Researchers at the Max Planck Institute for Ornithology and the University of Lausanne have discovered that the sleeping patterns of baby birds are similar to that of baby mammals. What is more, the sleep of baby birds appears to change in the same way as it does in humans. Studying barn owls in the wild, the researchers discovered that this change in sleep is strongly correlated with the expression of a gene involved in producing dark, melanic feather spots, a trait known to covary with behavioral and physiological traits in adult owls. These findings raise the intriguing ...
Vandetanib (trade name: Caprelsa) has been approved in Germany since February 2012 for the treatment of adult patients who have a particular form of aggressive thyroid cancer. In a new benefit assessment, the German Institute for Quality and Efficiency in Health Care (IQWiG) has now examined the added benefit of the drug pursuant to the Act on the Reform of the Market for Medicinal Products (AMNOG).
There is a hint that pain occurs later or gets worse later in a part of the patients, the ones aged under 65 years.But because of the overall poor data on side effects, no ...