(Press-News.org) Some optical illusions look like they're in motion even though the picture is static. A new map of the fly brain also suggests motion—or at least how the fly sees movement. The new research, published in the August 8 issue of Nature, takes advantage of a high-throughput approach that speeds the charting of neuronal connections involved in motion detection.
Neurons snake through the brain, each reaching out and touching many other neurons. In the human brain, 100 billion neurons make on average 1,000 connections each. That intricate network is the secret behind all the amazing things that humans do, like writing War and Peace, painting the Mona Lisa, cooking Chateaubriand, or setting a world record in the 100-meter dash. Scientists know a lot about how individual cells work, but they are just beginning to understand how networks of neurons work together to dictate behavior and thought.
One approach is to map all those neurons and connections. But with the size of the human brain, that's a daunting task. To attack the problem, researchers are turning to organisms with fewer neurons that can be studied easily in lab, such as the fruit fly.
Fruit flies still accomplish amazing things with their relatively rudimentary nervous systems. Flies are exceptionally good at spotting motion, for instance; part of the secret of their success comes from adjacent light-sensitive cells in the fly eye that process light information at slightly different times. But it was unclear how the underlying circuits made sense of that information.
To tackle the question, Dmitri Chklovskii, a lab head at HHMI's Janelia Farm Research Campus, and his colleagues sought to map a part of the fly brain essential for vision. The eye passes information through several brain centers in sequence, including one called the optic medulla.
To plot the circuits in the optic medulla, Chklovskii and colleagues froze a fly brain and then sliced it into very thin sections. Then they took pictures of the part of each section corresponding to the medulla with an electron microscope. Next, they wanted to follow each neuron as it wove from section to section. To do this by hand is arduous, so the researchers sped the process by using a computer procedure that identified the neurons automatically. It wasn't perfect—sometimes the computer joined two neurons that should be separate, or split a single neuron into two. The researchers used people to check for errors, but the automated method still sped the process.
They then stitched together all of the images into a three-dimensional picture of the optic medulla. They could assign a specific type to each neuron by comparing its shape to the shapes of neurons determined by other methods. And they pinpointed all the connections by searching for telltale structures found at these junctions, called synapses. "We see special features that tell you there's a functional connection," says Chklovskii. Overall, they picked out 379 cells and pinpointed 8,637 connections between them.
Next, the group analyzed the three-dimensional model to learn more about the neural circuitry that enabled flies to detect motion. "When the work started, we did not even know which cells output motion signal," says Chklovskii. But because a type of neuron called T4 came in four varieties corresponding to the four cardinal direction of motion, they decided to look for cells that can relay the message to T4s. Working backwards, they pinpointed two other types of neurons, Mi1 and Tm3, which connect to T4 cells.
In a simple model, Mi1 and Tm3 might each connect a different but adjacent receptor cell in the eye to T4, and T4 could look for a delay between the two inputs as evidence of motion. But Chklovskii found that "a whole group" of Mi1 cells and Tm3 cells connected to a T4 cell. They mapped those groups back to L1 cells, which receive light information from the eye. The L1 cells connected through Mi1 were offset from those connected through Tm3. Moreover, the offset was aligned with the direction in which a given T4 cell is sensitive to movement, which the researchers could discern based on where the T4 cell headed next. An object moving in T4's preferred direction would, say, first activate the Tm3 side of the circuit and then the Mi1 side of the circuit, Chklovskii posits.
The study defines for the first time the circuit responsible for seeing movement, says Chklovskii. Recently, his guess that T4s respond to motion direction has been confirmed by imaging their activity. The map suggests new experiments, he says. For instance, the spacing of the circuit suggests what the time delays should be between the Mi1 signal and the Tm3 signal.
"Other labs are recording from these cell types and looking for the time delays," says Chklovskii. An important outcome is showing that Mi1 and Tm3 cells are the major cells that convey information necessary for motion detection to T4s suggesting them as targets for recordings. Mapping the entire region is important because it tells you which types of cells are involved, but also which types are not involved. Sometimes if you look at a static picture in just the right way, things start moving.
INFORMATION: END
A newly discovered fossil reveals the evolutionary adaptations of a 165-million-year-old proto-mammal, providing evidence that traits such as hair and fur originated well before the rise of the first true mammals. The biological features of this ancient mammalian relative, named Megaconus mammaliaformis, are described by scientists from the University of Chicago in the Aug 8 issue of Nature.
"We finally have a glimpse of what may be the ancestral condition of all mammals, by looking at what is preserved in Megaconus. It allows us to piece together poorly understood details ...
The National Institutes of Health today announced in Nature that it has reached an understanding with the family of the late Henrietta Lacks to allow biomedical researchers controlled access to the whole genome data of cells derived from her tumor, commonly known as HeLa cells. These cells have already been used extensively in scientific research and have helped make possible some of the most important medical advances of the past 60 years. These include the development of modern vaccines, cancer treatments, in vitro fertilization techniques, and many others. HeLa cells ...
INDIANAPOLIS -- Researchers from Indiana University, the University of Michigan, the Fred Hutchinson Cancer Research Center and the Dana-Farber Cancer Institute have identified and validated a biomarker accessible in blood tests that could be used to predict which stem cell transplant patients are at highest risk for a potentially fatal immune response called graft-versus-host disease.
Although transplant specialists have been able to reduce its impact, graft-versus-host disease remains a leading cause of death among patients who receive a stem cell transplant from another ...
The range of helpful bacteria in the guts of infants delivered by caesarean section, during their first two years of life, is narrower than that of infants delivered vaginally, indicates a small study published online in the journal Gut.
This has implications for the development of the immune system, say the researchers, particularly as the C-section infants had lower levels of the major group of gut bacteria associated with good gut health, Bacteroidetes phylum, as well as chemicals that help curb allergic responses.
The researchers assessed the patterns of bacterial ...
Rheumatoid arthritis significantly increases the risk of potentially fatal blood clots in the legs and lungs, reveals a large nationwide study published online in the Annals of the Rheumatic Diseases.
Between 11% and 30% of people who develop a blood clot in the legs, known as a deep vein thrombosis or DVT, or a blood clot in the lungs, known as a pulmonary embolism, or PE, die within 30 days of their diagnosis, the evidence suggests.
Several studies have shown that chronic inflammation, which typifies rheumatoid arthritis, is linked to a heightened risk of thickened ...
A team from the University of Washington has unveiled a comprehensive portrait of the genome of the world's first immortal cell line, known as HeLa. The cell line was derived in 1951 from an aggressive cervical cancer that killed Henrietta Lacks, a 31-year-old African-American tobacco farmer and mother of five – the subject of the 2010 New York Times bestseller, The Immortal Life of Henrietta Lacks. They will also be the first group to publish under a new National Institutes of Health (NIH) policy for HeLa genomic data, established through discussions with Lacks' family.
The ...
In a discovery that further demonstrates just how unexpected and unusual nature can be, scientists have found two strains of bacteria whose symbiotic relationship is unlike anything seen before.
Long, thin, hairlike Thioploca (meaning "sulfur braids" in Spanish) trichomes form chains down into marine sediment, which tiny anammox cells ride down like an elevator. At the bottom, the anammox cells consume the waste products of the Thioploca: nitrite and ammonium, or "fixed" nitrogen.
Nitrogen is a crucial building block of life, a prerequisite for photosynthesis. While ...
BETHESDA, MD -- The first study to sequence and analyze the entire genome of a HeLa cell line, along with access to its sequence data, has been published today (Wednesday, August 7) in its final version, by G3: Genes|Genomes|Genetics, an open-access, scientific journal of the Genetics Society of America.
The article, "The Genomic and Transcriptomic Landscape of a HeLa Cell Line," by Landry et al., was authored by scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and was published in an early online version March 11, 2013.
Genomic ...
Organic solar cells that convert light to electricity using carbon-based molecules have shown promise as a versatile energy source but have not been able to match the efficiency of their silicon-based counterparts.
Now, researchers have discovered a synthetic, high-performance polymer that behaves differently from other tested materials and could make inexpensive, highly efficient organic solar panels a reality.
The polymer, created at the University of Washington and tested at the University of Cambridge in England, appears to improve efficiency by wringing electrical ...
One of the most basic and intensively studied processes in biology—one which has been detailed in biology textbooks for decades—has gained a new level of understanding, thanks to the application of simple math to a problem that scientists never before thought could benefit from mathematics.
The scientists who made the discovery, published in this week's advance online publication of Nature, found that the process bacteria use to quickly adapt to metabolize preferred energy sources such as glucose—a process called "catabolite repression"—is controlled not just by glucose, ...