(Press-News.org) STANFORD, Calif. —The steady accumulation of a protein in healthy, aging brains may explain seniors' vulnerability to neurodegenerative disorders, a new study by researchers at the Stanford University School of Medicine reports.
The study's unexpected findings could fundamentally change the way scientists think about neurodegenerative disease.
The pharmaceutical industry has spent billions of dollars on futile clinical trials directed at treating Alzheimer's disease by ridding brains of a substance called amyloid plaque. But the new findings have identified another mechanism, involving an entirely different substance, that may lie at the root not only of Alzheimer's but of many other neurodegenerative disorders — and, perhaps, even the more subtle decline that accompanies normal aging.
The study, to be published Aug. 14 in the Journal of Neuroscience, reveals that with advancing age, a protein called C1q, well-known as a key initiator of immune response, increasingly lodges at contact points connecting nerve cells in the brain to one another. Elevated C1q concentrations at these contact points, or synapses, may render them prone to catastrophic destruction by brain-dwelling immune cells, triggered when a catalytic event such as brain injury, systemic infection or a series of small strokes unleashes a second set of substances on the synapses.
"No other protein has ever been shown to increase nearly so profoundly with normal brain aging," said Ben Barres, MD, PhD, professor and chair of neurobiology and senior author of the study. Examinations of mouse and human brain tissue showed as much as a 300-fold age-related buildup of C1q.
The finding was made possible by the diligence and ingenuity of the study's lead author, Alexander Stephan, PhD, a postdoctoral scholar in Barres' lab. Stephan screened upward of 20,000 antibodies before finding one that binds to C1q and nothing else. (Antibodies are proteins, generated by the immune system, that adhere to specific "biochemical shapes," such as surface features of invading pathogens.)
Comparing brain tissue from mice of varying ages, as well as postmortem samples from a 2-month-old infant and an older person, the researchers showed that these C1q deposits weren't randomly distributed along nerve cells but, rather, were heavily concentrated at synapses. Analyses of brain slices from mice across a range of ages showed that as the animals age, the deposits spread throughout the brain.
"The first regions of the brain to show a dramatic increase in C1q are places like the hippocampus and substantia nigra, the precise brain regions most vulnerable to neurodegenerative diseases like Alzheimer's and Parkinson's disease, respectively," said Barres. Another region affected early on, the piriform cortex, is associated with the sense of smell, whose loss often heralds the onset of neurodegenerative disease.
Other scientists have observed moderate, age-associated increases (on the order of three- or four-fold) in brain levels of the messenger-RNA molecule responsible for transmitting the genetic instructions for manufacturing C1q to the protein-making machinery in cells. Testing for messenger-RNA levels — typically considered reasonable proxies for how much of a particular protein is being produced — is fast, easy and cheap compared with analyzing proteins.
But in this study, Barres and his colleagues used biochemical measures of the protein itself. "The 300-fold rise in C1q levels we saw in 2-year-old mice — equivalent to 70- or 80-year-old humans — knocked my socks off," Barres said. "I was not expecting that at all."
C1q is the first batter on a 20-member team of immune-response-triggering proteins, collectively called the complement system. C1q is capable of clinging to the surface of foreign bodies such as bacteria or to bits of our own dead or dying cells. This initiates a molecular chain reaction known as the complement cascade. One by one, the system's other proteins glom on, coating the offending cell or piece of debris. This in turn draws the attention of omnivorous immune cells that gobble up the target.
The brain has its own set of immune cells, called microglia, which can secrete C1q. Still other brain cells, called astrocytes, secrete all of C1q's complement-system "teammates." The two cell types work analogously to the two tubes of an Epoxy kit, in which one tube contains the resin, the other a catalyst.
Previous work in Barres' lab has shown that the complement cascade plays a critical role in the developing brain. A young brain generates an excess of synapses, creating a huge range of options for the potential formation of new neural circuits. These synapses strengthen or weaken over time, in response to their heavy use or neglect. The presence of feckless connections contributes noise to the system, so the efficiency of the maturing brain's architecture is improved if these underused synapses are pruned away.
In a 2007 paper in Cell, Barres' group reported that the complement system is essential to synaptic pruning in normal, developing brains. Then in 2012, in Neuron, in a collaboration with the lab of Harvard neuroscientist Beth Stevens, PhD, they showed that it is specifically microglia — the brain's in-house immune cells — that attack and ingest complement-coated synapses.
Barres now believes something similar is happening in the normal, aging brain. C1q, but not the other protein components of the complement system, gradually becomes highly prevalent at synapses. By itself, this C1q buildup doesn't trigger wholesale synapse loss, the researchers found — although it does seem to impair their performance. Old mice whose capacity to produce C1q had been eliminated performed subtly better on memory and learning tests than normal older mice did.
Still, this leaves the aging brain's synapses precariously perched on the brink of catastrophe. A subsequent event such as brain trauma, a bad case of pneumonia or perhaps a series of tiny strokes that some older people experience could incite astrocytes — the second tube in the Epoxy kit — to start secreting the other complement-system proteins required for synapse destruction.
Most cells in the body have their own complement-inhibiting agents. This prevents the wholesale loss of healthy tissue during an immune attack on invading pathogens or debris from dead tissue during wound healing. But nerve cells lack their own supply of complement inhibitors. So, when astrocytes get activated, their ensuing release of C1q's teammates may set off a synapse-destroying rampage that spreads "like a fire burning through the brain," Barres said.
"Our findings may well explain the long-mysterious vulnerability specifically of the aging brain to neurodegenerative disease," he said. "Kids don't get Alzheimer's or Parkinson's. Profound activation of the complement cascade, associated with massive synapse loss, is the cardinal feature of Alzheimer's disease and many other neurodegenerative disorders. People have thought this was because synapse loss triggers inflammation. But our findings here suggest that activation of the complement cascade is driving synapse loss, not the other way around."
In 2011, Barres co-founded a company, Annexon, to develop drugs that inhibit the complement cascade to treat Alzheimer's, glaucoma, Parkinson's, stroke, multiple sclerosis and several other neurodegenerative diseases characterized by massive synapse loss. Annexon has licensed multiple associated patent applications from Stanford, which filed them.
Other Stanford co-authors of the study were Daniel Madison, PhD, associate professor of molecular and cellular physiology; Mehrdad Shamloo, PhD, associate professor of comparative medicine; postdoctoral scholars Laurence Coutellier, PhD, and Jose Maria Mateos, PhD; research associate Emilie Lovelett; and graduate student Dominic Berns.
###
The study was funded by the Ellison Medical Foundation and the National Institute of Drug Addiction (grant DA15403).
Information about Stanford Medicine's Department of Neurobiology, which supported this work, is available at http://neurobiology.stanford.edu/.
The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.
Print media contact: Bruce Goldman at (650) 725-2106 (goldmanb@stanford.edu)
Broadcast media contact: Margarita Gallardo at (650) 723-7897 (mjgallardo@stanford.edu)
Study identifies new culprit that may make aging brains susceptible to neurodegenerative diseases
2013-08-14
ELSE PRESS RELEASES FROM THIS DATE:
Early surgery better than watchful waiting for patients with severe mitral valve regurgitation
2013-08-14
ROCHESTER, Minn. -- Patients with severe mitral valve regurgitation who are otherwise healthy should have mitral valve repair surgery sooner rather than later, even if they feel no symptoms, a Mayo Clinic-led study by U.S. and European researchers found. The results challenge the long-held belief that it is safer to "watch and wait" until a patient has symptoms, such as shortness of breath. This is the largest study to show that patients who undergo surgery early after diagnosis have improved long-term survival and lower risk of heart failure.
The findings will be published ...
Heart failure patients who are more likely to benefit from implantation of pacemaker
2013-08-14
In a large population of Medicare beneficiaries with heart failure who underwent implantation of a cardiac resynchronization therapy defibrillator, patients who had the cardiac characteristics of left bundle-branch block and longer QRS duration had the lowest risks of death and all-cause, cardiovascular, and heart failure readmission, according to a study in the August 14 issue of JAMA.
"Clinical trials have shown that cardiac resynchronization therapy (CRT) improves symptoms and reduces mortality and readmission among selected patients with heart failure and left ventricular ...
Surgery for heart valve disorder associated with greater long-term survival
2013-08-14
In a study that included patients with mitral valve regurgitation due to a condition known as flail mitral valve leaflets, performance of early surgical correction compared with initial medical management was associated with greater long-term survival and lower risk of heart failure, according to a study in the August 14 issue of JAMA.
"Degenerative mitral regurgitation [backflow of blood from the left ventricle to the left atrium due to mitral valve insufficiency] is common and can be surgically repaired in the vast majority of patients, improving symptoms and restoring ...
Study examines incidence of sports-related sudden death in France
2013-08-14
"Although screening programs prior to participation in sports have been used for many years for young competitive athletes, it has been suggested that screening programs might also be worthwhile in the general population. Description of the incidence of sports-related sudden death by specific sports as well as by sex and age may help inform the debate," write Eloi Marijon, M.D., of the Université Paris Descartes, Sorbonne Paris Cité, Paris, and colleagues.
As reported in a Research Letter, the study was performed in France between 2005 and 2010, and overall, 60 of 96 ...
Ancient mammal relatives cast light on recovery after mass extinction
2013-08-14
The study's findings are surprising as much research so far suggests that the survivors of mass extinctions are often presented with new ecological opportunities because the loss of many species in their communities allows them to evolve new lifestyles and new anatomical features as they fill the roles vacated by the victims. However, it turns out that not all survivors respond in the same way, and some may not be able to exploit fully the new opportunities arising after a mass extinction.
Dr Marcello Ruta of the University of Lincoln, with colleagues from the Field ...
Frontiers news briefs: Aug. 13
2013-08-14
Frontiers in Psychology
People who often recall their dreams respond more strongly to their name
Dreaming remains one of the great mysteries of human cognition. It is still not fully known when dreams occur, and which mechanisms in the brain produce them. A major difficulty for studying dreams is that they leave only a fleeting memory upon awakening.
Perrine Ruby and colleagues from the Lyon Neuroscience Research Center chose a new approach to investigate dreaming. They recorded brain activity of two groups of participants: high dream recallers who recall dreams ...
Brain scans may help diagnose dyslexia
2013-08-14
CAMBRIDGE, MA -- About 10 percent of the U.S. population suffers from dyslexia, a condition that makes learning to read difficult. Dyslexia is usually diagnosed around second grade, but the results of a new study from MIT could help identify those children before they even begin reading, so they can be given extra help earlier.
The study, done with researchers at Boston Children's Hospital, found a correlation between poor pre-reading skills in kindergartners and the size of a brain structure that connects two language-processing areas.
Previous studies have shown that ...
Shortening tails gave early birds a leg up
2013-08-14
A radical shortening of their bony tails over 100 million years ago enabled the earliest birds to develop versatile legs that gave them an evolutionary edge, a new study shows.
A team led by Oxford University scientists examined fossils of the earliest birds from the Cretaceous Period, 145-66 million years ago, when early birds, such as Confuciusornis, Eoenantiornis, and Hongshanornis, lived alongside their dinosaur kin. At this point birds had already evolved powered flight, necessitating changes to their forelimbs, and the team investigated how this new lifestyle related ...
'Hyper-vigilance' about race linked to elevated blood pressure in black patients
2013-08-14
Black patients preoccupied with racial concerns have higher blood pressure than those who aren't, according to results of new Johns Hopkins-led research. The findings suggest that heightened race consciousness could at least in part account for the disproportionately high rate of hypertension in black Americans — the highest prevalence of any group in the United States and one of the highest rates in the world.
"A preoccupation with race among blacks leads to hyper-vigilance, a heightened awareness of their stigmatized status in society and a feeling that they need to ...
Children with allergy, asthma may be at higher risk for ADHD
2013-08-14
ARLINGTON HEIGHTS, ILL. (Aug. 13, 2013) – The number of children being diagnosed with attention-deficit disorder (ADHD), allergy and asthma is increasing in the United States. And according to a new study, there might be a link between the growth of these three conditions.
The study, published in the August issue of Annals of Allergy, Asthma & Immunology, the scientific journal of the American College of Allergy, Asthma and Immunology (ACAAI), found there is an increased risk of ADHD in boys that have a history of allergy or asthma.
"ADHD, a chronic mental health disorder, ...