PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Rice technique expands options for molecular imaging

1-of-a-kind spectrometer reads vibrations between atoms to find structures of molecules

2013-08-15
(Press-News.org) HOUSTON -- (Aug. 15, 2013) -- A Rice University laboratory has improved upon its ability to determine molecular structures in three dimensions in ways that challenge long-used standards.

By measuring the vibrations between atoms using femtosecond-long laser pulses, the Rice lab of chemist Junrong Zheng is able to discern the positions of atoms within molecules without the restrictions imposed by X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) imaging.

The technique can capture the structure of molecules at room temperature or very low or high temperatures and in many kinds of samples, including crystals, powders, gels, liquids and gases. It will be useful to scientists who study catalysis, energy storage, organic solar cells and biomembranes, among many other possibilities, Zheng said.

The researchers reported their results online this week in the American Chemical Society's Journal of Physical Chemistry.

Zheng and his co-authors at Rice and Oak Ridge National Laboratory analyzed variations of a model molecule, 4'-methyl-2'nitroacetanilide (MNA), and compared the results with computer-generated and XRD models. The images matched nicely, he said.

Traditional spectrometers read the wavelengths of light scattered by samples to identify materials and study their properties. But the one-of-a-kind spectrometer developed by Zheng uses very short laser pulses to read the vibrational energies inherent to every atom. Those energies determine how atoms bond to form a molecule, and a measurement of the length and angles of those bonds can be extracted from the vibrations themselves, he said.

The infrared and terahertz lasers used for the experiment captured information about a molecular angle in a mere 100 femtoseconds. (One femtosecond is a millionth of a billionth of a second.)

"The important part of this paper is to demonstrate that our method can determine three-dimensional molecular structures no matter whether they're in liquids or solids," Zheng said.

"Typically, when organic chemists synthesize a molecule, they know its makeup but have no idea what the structure is," he said. "Their first option is to make a single crystal of the molecule and use XRD to determine the precise structure. But in many cases it's very tedious, if not impossible, to grow a single crystal.

"People also use NMR to learn the structure," he said. "But the trouble with many molecules is the solubility is really bad. Insoluble molecules can't be read well by either method."

The Rice technique, dubbed "multiple-dimensional vibrational spectroscopy," is able to capture the conformation of small molecules -- for starters -- with great accuracy, Zheng said. The spectrometer reads only intramolecular interactions among vibrations and ignores interactions between molecules, he said.

"The atoms in every molecule are always vibrating, and each bond between atoms vibrates at a certain frequency, and in a certain direction," he said. "We found that if we can measure the direction of one vibration and then another, then we can know the angle between these two vibrations – and therefore the angle between the bonds."

He said the researchers begin with the chemical formula and already know, through Fourier transform infrared spectroscopy, how many vibrational frequencies are contained in a given molecule. "Then we measure each vibrational mode, one by one. Once we get all the cross-angles, we can translate this to a model," he said.

For now, as a proof of concept, Zheng and his team analyze molecules for which the structure is already known. Over time, the technique should be able to analyze much larger molecules, like viruses that contain thousands or tens of thousands of atoms, he said.

"This is just the first demonstration that this method works," he said. "These are simple molecules, 23 or 24 atoms. I think it will take some time to get to proteins. My expectation is that it will take 10 to 20 years to develop. Remember, for NMR, it took 50 years to be able to read the structure of proteins."



INFORMATION:

Hailong Chen, a Welch postdoctoral research fellow at Rice, is lead author of the paper; Co-authors are Rice graduate students Yufan Zhang and Jiebo Li and Oak Ridge researchers Hongjun Liu and De-en Jiang. Zheng is an assistant professor of chemistry.

The Air Force Office of Scientific Research, the Welch Foundation, the Packard Foundation and the Department of Energy supported the research.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/jp406304c.

This news release can be found online at:

http://news.rice.edu/2013/08/15/rice-technique-expands-options-for-molecular-imaging/

Related Materials:

Zheng Lab: http://www.owlnet.rice.edu/~jz8/home.html

Images for download:

http://news.rice.edu/wp-content/uploads/2013/08/0819_ANGLES-1-WEB.jpg

CUTLINE: A technique by Rice University chemist Junrong Zheng measures vibrations between atoms to determine the three-dimensional form of molecules. (Credit: Zheng Lab/Rice University)

http://news.rice.edu/wp-content/uploads/2013/08/0815-ANGLES-group-lg.jpg

CUTLINE: Rice University researchers -- from left, Professor Junrong Zheng, Yufan Zhang and Hailong Chen -- are challenging long-used standards by determining the three-dimensional shape of molecules by measuring the vibrations between their atoms. (Credit: Jeff Fitlow/Rice University)



ELSE PRESS RELEASES FROM THIS DATE:

New model helps universities map their nitrogen footprint

2013-08-15
New Rochelle, NY, August 15, 2013—The first institution-level model to estimate the amount of reactive nitrogen released into the environment—a contributor to smog, acid rain, and climate change—is enabling the University of Virginia to quantify its nitrogen footprint and take steps to reduce it. A detailed description of this cutting-edge tool and how it can help improve institutional sustainability is presented in Sustainability: The Journal of Record a publication of Mary Ann Liebert, Inc., publishers. The Open Access article is available on the Sustainability: The Journal ...

Growth of disorder of electrons measured in dual temperature system

2013-08-15
Researchers at Aalto University, Finland and the University of Tokyo have succeeded for the first time in experimentally measuring a probability distribution for entropy production of electrons. Entropy production means an increase in disorder when electrons are moved individually between two microscopic conductors of differing temperatures. The researchers also showed that a connection prevails between two definitions of entropy that have been used. The result is significant for the design of future nanoelectronic devices. The study was published recently in the scientific ...

First time: NJIT researchers examine dynamics of liquid metal particles at nanoscale

2013-08-15
Two NJIT researchers have demonstrated that using a continuum-based approach, they can explain the dynamics of liquid metal particles on a substrate of a nanoscale. "Numerical simulation of ejected molten metal nanoparticles liquified by laser irradiation: Interplay of geometry and dewetting," appeared in Physical Review Letters (July 16, 2013). The evolution of fluid drops deposited on solid substrates has been a focus of large research effort for decades, said co-author Shahriar Afkhami, an assistant professor in the NJIT Department of Mathematical Sciences. This ...

'Rothman Index' may help to lower repeat hospitalization risk

2013-08-15
Philadelphia, Pa. (August 15, 2013) – A health risk score calculated automatically using routine data from hospital electronic medical records (EMR) systems can identify patients at high risk of unplanned hospital readmission, reports a study in the September issue of Medical Care, published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health. The score, called the Rothman Index, may provide a useful tool for lowering the rate of avoidable repeat hospitalizations, according to the report by Elizabeth Bradley, PhD, of Yale School of Public Health and colleagues. ...

MicroRNAs have diagnostic and prognostic potential in urinary bladder cancer

2013-08-15
Philadelphia, PA, August 15, 2013 – German researchers have identified four biomarkers that correctly determine malignancy of urinary bladder cancers and contribute to the accurate prediction of patient outcomes. Their results are published in the September issue of The Journal of Molecular Diagnostics. Current prognosticators of bladder cancer, such as tumor grade, stage, size, and number of foci, have limited usefulness for clinicians since they do not accurately reflect clinical outcomes. Therefore, investigators have been searching for new biomarkers with better diagnostic ...

UTHealth researchers link PRKG1 genetic mutation to thoracic aortic disease

2013-08-15
HOUSTON – (Aug. 15, 2013) – A multi-institutional team led by Dianna Milewicz, M.D., Ph.D., of The University of Texas Health Science Center at Houston (UTHealth) has found a recurrent genetic mutation that has been linked to deadly thoracic aortic dissections in family members as young as 17 years of age. The gene known as PRKG1 makes a protein called cGMP-dependent kinase, type I. The PRKG1 mutation alters the function of the protein and causes the muscle cells in the wall of the aorta to respond incorrectly to pulsatile blood flow from the heart, and the change in ...

Remembering to remember supported by 2 distinct brain processes

2013-08-15
You plan on shopping for groceries later and you tell yourself that you have to remember to take the grocery bags with you when you leave the house. Lo and behold, you reach the check-out counter and you realize you've forgotten the bags. Remembering to remember — whether it's grocery bags, appointments, or taking medications — is essential to our everyday lives. New research sheds light on two distinct brain processes that underlie this type of memory, known as prospective memory. The research is published in Psychological Science, a journal of the Association for ...

Rutgers study: Worms may shed light on human ability to handle chronic stress

2013-08-15
New research at Rutgers University may help shed light on how and why nervous system changes occur and what causes some people to suffer from life-threatening anxiety disorders while others are better able to cope. Maureen Barr, a professor in the Department of Genetics, and a team of researchers, found that the architectural structure of the six sensory brain cells in the roundworm, responsible for receiving information, undergo major changes and become much more elaborate when the worm is put into an high stress environment. Scientists have known for some time that ...

Researchers discover beneficial jumping gene

2013-08-15
RIVERSIDE, Calif. — Transposons are DNA elements that can multiply and change their location within an organism's genome. Discovered in the 1940s, for years they were thought to be unimportant and were called "junk DNA." Also referred to as transposable elements and jumping genes, they are snippets of "selfish DNA" that spread in their host genomes serving no other biological purpose but their own existence. Now Tokuji Tsuchiya and Thomas Eulgem, geneticists at the University of California, Riverside, challenge that understanding. They report online this week in the ...

Try clapping your wet hands; a physics lesson from Virginia Tech engineers

2013-08-15
Sunny Jung continues to redefine the views on the laws of physics, and in doing so, impacts the research on topics as varied as drug delivery methods to fuel efficiency. In a paper appearing this month in Physical Review E, Young and five colleagues reported on the dynamics of squeezing fluids using a simple experiment of clapping with wet hands. As an engineer, Jung described "this outburst of fluid motion" as the unusual physical phenomena. Earlier in his career, Jung, an assistant professor of engineering science and mechanics at Virginia Tech, made headlines in ...

LAST 30 PRESS RELEASES:

Two fundamental coordination patterns in underwater dolphin kick identified

Dynamic tuning of Bloch modes in anisotropic phonon polaritonic crystals

Dr. Ben Thacker named SwRI chief operating officer

Korea University’s College of Medicine held the 2025 Joint Forum with Yale University

Wetlands do not need to be flooded to provide the greatest climate benefit

Bat virome evolution in Indochina Peninsula reveals cross-species origins of porcine epidemic diarrhea virus and regional surveillance gaps

How a fridge could unlock modern dairy cattle breeding in the developing world

CHEST® Critical Care added to Web of Science Emerging Sources Citation Index

Scientists unravel vines’ parasitic nature

57.5% of commercially insured patients had at least one chronic condition in 2024, according to Fair Health report

One-third of young people are violent toward their parents

New SEOULTECH study reveals transparent windows that shield buildings from powerful electromagnetic pulses

Randomized trial finds drug therapy reduces hot flashes during prostate cancer treatment

Reshaping gold leads to new electronic and optical properties

Tracker to help manage Long COVID energy levels created by researchers

Using generative AI to help scientists synthesize complex materials

Unexpected feedback in the climate system

Fresh insights show how cancer gene mutations drive tumor growth

Unexpected climate feedback links Antarctic ice sheet with reduced carbon uptake

Psychosis rates increasing in more recent generations

Tiny new dinosaur Foskeia pelendonum reshapes the dinosaur family tree

New discovery sheds light on evolutionary crossroads of vertebrates   

Aortic hemiarch reconstruction safely matches complex aortic arch reconstruction for acute dissection in older adults

Destination Earth digital twin to improve AI climate and weather predictions

Late-breaking study finds comparable long-term survival between two leading multi-arterial CABG strategies

Lymph node examination should be expanded to accurately assess cancer spread in patients with lung cancer

Study examines prediction of surgical risk in growing population of adults with congenital heart disease

Novel radiation therapy QA method: Monte Carlo simulation meets deep learning for fast, accurate epid transmission dose generation

A 100-fold leap into the unknown: a new search for muonium conversion into antimuonium

A new approach to chiral α-amino acid synthesis - photo-driven nitrogen heterocyclic carbene catalyzed highly enantioselective radical α-amino esterification

[Press-News.org] Rice technique expands options for molecular imaging
1-of-a-kind spectrometer reads vibrations between atoms to find structures of molecules