(Press-News.org) HOUSTON -- (Aug. 15, 2013) -- A Rice University laboratory has improved upon its ability to determine molecular structures in three dimensions in ways that challenge long-used standards.
By measuring the vibrations between atoms using femtosecond-long laser pulses, the Rice lab of chemist Junrong Zheng is able to discern the positions of atoms within molecules without the restrictions imposed by X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) imaging.
The technique can capture the structure of molecules at room temperature or very low or high temperatures and in many kinds of samples, including crystals, powders, gels, liquids and gases. It will be useful to scientists who study catalysis, energy storage, organic solar cells and biomembranes, among many other possibilities, Zheng said.
The researchers reported their results online this week in the American Chemical Society's Journal of Physical Chemistry.
Zheng and his co-authors at Rice and Oak Ridge National Laboratory analyzed variations of a model molecule, 4'-methyl-2'nitroacetanilide (MNA), and compared the results with computer-generated and XRD models. The images matched nicely, he said.
Traditional spectrometers read the wavelengths of light scattered by samples to identify materials and study their properties. But the one-of-a-kind spectrometer developed by Zheng uses very short laser pulses to read the vibrational energies inherent to every atom. Those energies determine how atoms bond to form a molecule, and a measurement of the length and angles of those bonds can be extracted from the vibrations themselves, he said.
The infrared and terahertz lasers used for the experiment captured information about a molecular angle in a mere 100 femtoseconds. (One femtosecond is a millionth of a billionth of a second.)
"The important part of this paper is to demonstrate that our method can determine three-dimensional molecular structures no matter whether they're in liquids or solids," Zheng said.
"Typically, when organic chemists synthesize a molecule, they know its makeup but have no idea what the structure is," he said. "Their first option is to make a single crystal of the molecule and use XRD to determine the precise structure. But in many cases it's very tedious, if not impossible, to grow a single crystal.
"People also use NMR to learn the structure," he said. "But the trouble with many molecules is the solubility is really bad. Insoluble molecules can't be read well by either method."
The Rice technique, dubbed "multiple-dimensional vibrational spectroscopy," is able to capture the conformation of small molecules -- for starters -- with great accuracy, Zheng said. The spectrometer reads only intramolecular interactions among vibrations and ignores interactions between molecules, he said.
"The atoms in every molecule are always vibrating, and each bond between atoms vibrates at a certain frequency, and in a certain direction," he said. "We found that if we can measure the direction of one vibration and then another, then we can know the angle between these two vibrations – and therefore the angle between the bonds."
He said the researchers begin with the chemical formula and already know, through Fourier transform infrared spectroscopy, how many vibrational frequencies are contained in a given molecule. "Then we measure each vibrational mode, one by one. Once we get all the cross-angles, we can translate this to a model," he said.
For now, as a proof of concept, Zheng and his team analyze molecules for which the structure is already known. Over time, the technique should be able to analyze much larger molecules, like viruses that contain thousands or tens of thousands of atoms, he said.
"This is just the first demonstration that this method works," he said. "These are simple molecules, 23 or 24 atoms. I think it will take some time to get to proteins. My expectation is that it will take 10 to 20 years to develop. Remember, for NMR, it took 50 years to be able to read the structure of proteins."
INFORMATION:
Hailong Chen, a Welch postdoctoral research fellow at Rice, is lead author of the paper; Co-authors are Rice graduate students Yufan Zhang and Jiebo Li and Oak Ridge researchers Hongjun Liu and De-en Jiang. Zheng is an assistant professor of chemistry.
The Air Force Office of Scientific Research, the Welch Foundation, the Packard Foundation and the Department of Energy supported the research.
Read the abstract at http://pubs.acs.org/doi/abs/10.1021/jp406304c.
This news release can be found online at:
http://news.rice.edu/2013/08/15/rice-technique-expands-options-for-molecular-imaging/
Related Materials:
Zheng Lab: http://www.owlnet.rice.edu/~jz8/home.html
Images for download:
http://news.rice.edu/wp-content/uploads/2013/08/0819_ANGLES-1-WEB.jpg
CUTLINE: A technique by Rice University chemist Junrong Zheng measures vibrations between atoms to determine the three-dimensional form of molecules. (Credit: Zheng Lab/Rice University)
http://news.rice.edu/wp-content/uploads/2013/08/0815-ANGLES-group-lg.jpg
CUTLINE: Rice University researchers -- from left, Professor Junrong Zheng, Yufan Zhang and Hailong Chen -- are challenging long-used standards by determining the three-dimensional shape of molecules by measuring the vibrations between their atoms. (Credit: Jeff Fitlow/Rice University)
Rice technique expands options for molecular imaging
1-of-a-kind spectrometer reads vibrations between atoms to find structures of molecules
2013-08-15
ELSE PRESS RELEASES FROM THIS DATE:
New model helps universities map their nitrogen footprint
2013-08-15
New Rochelle, NY, August 15, 2013—The first institution-level model to estimate the amount of reactive nitrogen released into the environment—a contributor to smog, acid rain, and climate change—is enabling the University of Virginia to quantify its nitrogen footprint and take steps to reduce it. A detailed description of this cutting-edge tool and how it can help improve institutional sustainability is presented in Sustainability: The Journal of Record a publication of Mary Ann Liebert, Inc., publishers. The Open Access article is available on the Sustainability: The Journal ...
Growth of disorder of electrons measured in dual temperature system
2013-08-15
Researchers at Aalto University, Finland and the University of Tokyo have succeeded for the first time in experimentally measuring a probability distribution for entropy production of electrons. Entropy production means an increase in disorder when electrons are moved individually between two microscopic conductors of differing temperatures.
The researchers also showed that a connection prevails between two definitions of entropy that have been used. The result is significant for the design of future nanoelectronic devices. The study was published recently in the scientific ...
First time: NJIT researchers examine dynamics of liquid metal particles at nanoscale
2013-08-15
Two NJIT researchers have demonstrated that using a continuum-based approach, they can explain the dynamics of liquid metal particles on a substrate of a nanoscale. "Numerical simulation of ejected molten metal nanoparticles liquified by laser irradiation: Interplay of geometry and dewetting," appeared in Physical Review Letters (July 16, 2013).
The evolution of fluid drops deposited on solid substrates has been a focus of large research effort for decades, said co-author Shahriar Afkhami, an assistant professor in the NJIT Department of Mathematical Sciences. This ...
'Rothman Index' may help to lower repeat hospitalization risk
2013-08-15
Philadelphia, Pa. (August 15, 2013) – A health risk score calculated automatically using routine data from hospital electronic medical records (EMR) systems can identify patients at high risk of unplanned hospital readmission, reports a study in the September issue of Medical Care, published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.
The score, called the Rothman Index, may provide a useful tool for lowering the rate of avoidable repeat hospitalizations, according to the report by Elizabeth Bradley, PhD, of Yale School of Public Health and colleagues. ...
MicroRNAs have diagnostic and prognostic potential in urinary bladder cancer
2013-08-15
Philadelphia, PA, August 15, 2013 – German researchers have identified four biomarkers that correctly determine malignancy of urinary bladder cancers and contribute to the accurate prediction of patient outcomes. Their results are published in the September issue of The Journal of Molecular Diagnostics.
Current prognosticators of bladder cancer, such as tumor grade, stage, size, and number of foci, have limited usefulness for clinicians since they do not accurately reflect clinical outcomes. Therefore, investigators have been searching for new biomarkers with better diagnostic ...
UTHealth researchers link PRKG1 genetic mutation to thoracic aortic disease
2013-08-15
HOUSTON – (Aug. 15, 2013) – A multi-institutional team led by Dianna Milewicz, M.D., Ph.D., of The University of Texas Health Science Center at Houston (UTHealth) has found a recurrent genetic mutation that has been linked to deadly thoracic aortic dissections in family members as young as 17 years of age.
The gene known as PRKG1 makes a protein called cGMP-dependent kinase, type I. The PRKG1 mutation alters the function of the protein and causes the muscle cells in the wall of the aorta to respond incorrectly to pulsatile blood flow from the heart, and the change in ...
Remembering to remember supported by 2 distinct brain processes
2013-08-15
You plan on shopping for groceries later and you tell yourself that you have to remember to take the grocery bags with you when you leave the house. Lo and behold, you reach the check-out counter and you realize you've forgotten the bags.
Remembering to remember — whether it's grocery bags, appointments, or taking medications — is essential to our everyday lives. New research sheds light on two distinct brain processes that underlie this type of memory, known as prospective memory.
The research is published in Psychological Science, a journal of the Association for ...
Rutgers study: Worms may shed light on human ability to handle chronic stress
2013-08-15
New research at Rutgers University may help shed light on how and why nervous system changes occur and what causes some people to suffer from life-threatening anxiety disorders while others are better able to cope.
Maureen Barr, a professor in the Department of Genetics, and a team of researchers, found that the architectural structure of the six sensory brain cells in the roundworm, responsible for receiving information, undergo major changes and become much more elaborate when the worm is put into an high stress environment.
Scientists have known for some time that ...
Researchers discover beneficial jumping gene
2013-08-15
RIVERSIDE, Calif. — Transposons are DNA elements that can multiply and change their location within an organism's genome. Discovered in the 1940s, for years they were thought to be unimportant and were called "junk DNA." Also referred to as transposable elements and jumping genes, they are snippets of "selfish DNA" that spread in their host genomes serving no other biological purpose but their own existence.
Now Tokuji Tsuchiya and Thomas Eulgem, geneticists at the University of California, Riverside, challenge that understanding. They report online this week in the ...
Try clapping your wet hands; a physics lesson from Virginia Tech engineers
2013-08-15
Sunny Jung continues to redefine the views on the laws of physics, and in doing so, impacts the research on topics as varied as drug delivery methods to fuel efficiency.
In a paper appearing this month in Physical Review E, Young and five colleagues reported on the dynamics of squeezing fluids using a simple experiment of clapping with wet hands. As an engineer, Jung described "this outburst of fluid motion" as the unusual physical phenomena.
Earlier in his career, Jung, an assistant professor of engineering science and mechanics at Virginia Tech, made headlines in ...
LAST 30 PRESS RELEASES:
Ocean temperatures reached another record high in 2025
Dynamically reconfigurable topological routing in nonlinear photonic systems
Crystallographic engineering enables fast low‑temperature ion transport of TiNb2O7 for cold‑region lithium‑ion batteries
Ultrafast sulfur redox dynamics enabled by a PPy@N‑TiO2 Z‑scheme heterojunction photoelectrode for photo‑assisted lithium–sulfur batteries
Optimized biochar use could cut China’s cropland nitrous oxide emissions by up to half
Neural progesterone receptors link ovulation and sexual receptivity in medaka
A new Japanese study investigates how tariff policies influence long-run economic growth
Mental trauma succeeds 1 in 7 dog related injuries, claims data suggest
Breastfeeding may lower mums’ later life depression/anxiety risks for up to 10 years after pregnancy
Study finds more than a quarter of adults worldwide could benefit from GLP-1 medications for weight loss
Hobbies don’t just improve personal lives, they can boost workplace creativity too
Study shows federal safety metric inappropriately penalizes hospitals for lifesaving stroke procedures
Improving sleep isn’t enough: researchers highlight daytime function as key to assessing insomnia treatments
Rice Brain Institute awards first seed grants to jump-start collaborative brain health research
Personalizing cancer treatments significantly improve outcome success
UW researchers analyzed which anthologized writers and books get checked out the most from Seattle Public Library
Study finds food waste compost less effective than potting mix alone
UCLA receives $7.3 million for wide-ranging cannabis research
Why this little-known birth control option deserves more attention
Johns Hopkins-led team creates first map of nerve circuitry in bone, identifies key signals for bone repair
UC Irvine astronomers spot largest known stream of super-heated gas in the universe
Research shows how immune system reacts to pig kidney transplants in living patients
Dark stars could help solve three pressing puzzles of the high-redshift universe
Manganese gets its moment as a potential fuel cell catalyst
“Gifted word learner” dogs can pick up new words by overhearing their owners’ talk
More data, more sharing can help avoid misinterpreting “smoking gun” signals in topological physics
An illegal fentanyl supply shock may have contributed to a dramatic decline in deaths
Some dogs can learn new words by eavesdropping on their owners
Scientists trace facial gestures back to their source. before a smile appears, the brain has already decided
Is “Smoking Gun” evidence enough to prove scientific discovery?
[Press-News.org] Rice technique expands options for molecular imaging1-of-a-kind spectrometer reads vibrations between atoms to find structures of molecules