PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Researchers uncover new biological target for combating Parkinson's disease

Compounds already exist to potentially treat both inherited and non-inherited cases

2013-08-26
(Press-News.org) Researchers at Johns Hopkins and elsewhere have brought new clarity to the picture of what goes awry in the brain during Parkinson's disease and identified a compound that eases the disease's symptoms in mice. Their discoveries, described in a paper published online in Nature Neuroscience on August 25, also overturn established ideas about the role of a protein considered key to the disease's progress.

"Not only were we able to identify the mechanism that could cause progressive cell death in both inherited and non-inherited forms of Parkinson's, we found there were already compounds in existence that can cross into the brain and block this from happening," says Valina Dawson, Ph.D., the director of the Stem Cell Biology and Neuroregeneration Programs at the Johns Hopkins University School of Medicine's Institute for Cell Engineering (ICE). "While there are still many things that need to happen before we have a drug for clinical trials, we've taken some very promising first steps."

Dawson and her husband, Ted Dawson, M.D., Ph.D., the director of ICE, have collaborated for decades on studies of the molecular chain of events that leads to Parkinson's. One of their findings was that the function of an enzyme called parkin, which malfunctions in the disease, is to tag a bevy of other proteins for destruction by the cell's recycling machinery. This means that nonfunctional parkin leads to the buildup of its target proteins, and the Dawsons and others are exploring what roles these proteins might play in the disease.

In the new study, the Dawsons collaborated with Debbie Swing and Lino Tessarollo of the National Cancer Institute, to develop mice whose genes for a protein called AIMP2 could be switched into high gear. AIMP2 is one of the proteins normally tagged for destruction by parkin, so the genetically modified mice enabled the research team to put aside the effects of defective parkin and excesses of other proteins and look just at the consequences of too much AIMP2.

The consequences were that the mice developed symptoms similar to those of Parkinson's as they aged, the group found. As in Parkinson's patients, the brain cells that make the chemical dopamine were dying. Since AIMP2 is known for its role in the process of making new proteins, the researchers thought the cell death was caused by problems with this process. But when graduate student Yunjong Lee looked at the efficiency of protein-making in the affected mice, everything appeared normal.

Looking for an alternative explanation, Lee tested how cells with excess AIMP2 responded to compounds blocking various paths to cell death, and found that the AIMP2 was activating a self-destruct pathway called parthanatos, discovered and named by the Dawsons years ago for the for poly(ADP-ribose), or "PAR," and the Greek word thanatos, which means "messenger of death."

The Dawsons had previously seen parthanatos set off after events like traumatic injuries or stroke — not by chronic disease. And there were more surprises to come. Lee found that AIMP2 triggered parthanatos by directly interacting with a protein called PARP1, which was long thought to respond only to DNA damage — not to signals from other proteins. Valina Dawson notes that AIMP2 is actually the second protein found to activate PARP1, but the idea that PARP1 is only involved in detecting and responding to DNA damage is still firmly entrenched in her field.

Since the Dawsons had been studying PARP1 for some time, they knew of compounds drug companies had designed to block this enzyme. Such drugs are already in the process of being tested to protect healthy cells during cancer treatment. Crucially, two of these compounds can cross over the blood-brain barrier that keeps many drugs from affecting brain cells. The research team used a compound that blocks PARP1, and Lee tested it on the mice with too much AIMP2. "Not only did the compound protect dopamine-making neurons from death, it also prevented behavioral abnormalities similar to those seen in Parkinson's disease," Lee says.

Though the results are encouraging, Valina Dawson cautions that there are hurdles that will need to be overcome before either of the brain-accessible compounds has a chance to make it into clinical trials. More extensive animal testing will need to be done, and with mice whose Parkinson's symptoms don't arise from genetically amped-up AIMP2 production. In addition, Dawson explains, in order for trials on any Parkinson's drugs to run effectively, measurable markers of the disease's severity need to be found. Ted Dawson and others at Johns Hopkins say they are now working on a separate project to do just that.



INFORMATION:

The current study was funded by the National Institute of Neurological Disorders and Stroke (grant number NS38377), the JPB Foundation, and the Intramural Research Program of the National Cancer Institute's Center for Cancer Research. The authors acknowledge the joint participation by the Adrienne Helis Malvin Medical Research Foundation and the Diana Helis Henry Medical Research Foundation, through its direct engagement in the continuous active conduct of medical research in conjunction with The Johns Hopkins Hospital and the Johns Hopkins University School of Medicine and the foundation's Parkinson's disease programs.

Other authors of the study are Senthilkumar S. Karuppagounder, Joo-Ho Shin, Yun-Il Lee, Han Seok Ko, Haisong Jiang, Sung-Ung Kang, Byoung Dae Lee, Ho Chul Kang and Donghoon Kim, all of the Johns Hopkins University School of Medicine.

Related stories:

Johns Hopkins Team Explores Paris; Finds a Key to Parkinson's: http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_team_explores_paris_finds_a_key_to_parkinsons_

Parkinson's Disease: Excess of Special Protein Identified As Key to Symptoms and Possible New Target for Treatment with Widely Used Anti-Cancer Drug: http://www.hopkinsmedicine.org/news/media/releases/parkinsons_disease_excess_of_special_protein_identified_as_key_to_symptoms_and_possible_new_target_for_treatment_with_widely_used_anti_cancer_drug

The Mouse Model: Less Than Perfect, Still Invaluable: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/news_events/articles_and_stories/model_organisms/201010_mouse_model.html



ELSE PRESS RELEASES FROM THIS DATE:

Scientists pinpoint 105 additional genetic errors that cause cystic fibrosis

2013-08-26
Of the over 1,900 errors already reported in the gene responsible for cystic fibrosis (CF), it is unclear how many of them actually contribute to the inherited disease. Now a team of researchers reports significant headway in figuring out which mutations are benign and which are deleterious. In so doing, they have increased the number of known CF-causing mutations from 22 to 127, accounting for 95 percent of the variations found in patients with CF. In a summary of their research to be published online in Nature Genetics Aug. 25, the scientists say that characterizing ...

Cocaine's effect on mice may explain drug-seeking behavior

2013-08-26
Cocaine can speedily rewire high-level brain circuits that support learning, memory and decision-making, according to new research from the University of California, Berkeley, and UCSF. The findings shed new light on the frontal brain's role in drug-seeking behavior and may be key to tackling addiction. Looking into the frontal lobes of live mice at a cellular level, researchers found that, after just one dose of cocaine, the rodents showed fast and robust growth of dendritic spines, which are tiny, twig-like structures that connect neurons and form the nodes of the brain's ...

Mercury levels in Pacific fish likely to rise in coming decades

2013-08-26
ANN ARBOR — University of Michigan researchers and their University of Hawaii colleagues say they've solved the longstanding mystery of how mercury gets into open-ocean fish, and their findings suggest that levels of the toxin in Pacific Ocean fish will likely rise in coming decades. Using isotopic measurement techniques developed at U-M, the researchers determined that up to 80 percent of the toxic form of mercury, called methylmercury, found in the tissues of deep-feeding North Pacific Ocean fish is produced deep in the ocean, most likely by bacteria clinging to sinking ...

Leicester researchers discover a potential molecular defence against Huntington's disease

2013-08-26
Leicester geneticists have discovered a potential defence against Huntington's disease – a fatal neurodegenerative disorder which currently has no cure. The team of University of Leicester researchers identified that glutathione peroxidase activity – a key antioxidant in cells – protects against symptoms of the disease in model organisms. They hope that the enzyme activity – whose protective ability was initially observed in model organisms such as yeast - can be further developed and eventually used to treat people with the genetically-inherited disease. The disease ...

Gallo Center study in mice links cocaine use to new brain structures

2013-08-26
Mice given cocaine showed rapid growth in new brain structures associated with learning and memory, according to a research team from the Ernest Gallo Clinic and Research Center at UC San Francisco. The findings suggest a way in which drug use may lead to drug-seeking behavior that fosters continued drug use, according to the scientists. The researchers used a microscope that allowed them to peer directly into nerve cells within the brains of living mice, and within two hours of giving a drug they found significant increases in the density of dendritic spines – structures ...

Ocean fish acquire more mercury at depth

2013-08-26
Mercury—a common industrial toxin—is carried through the atmosphere before settling on the ocean and entering the marine food web. Now, exciting new research from the University of Michigan and the University of Hawai'i at Manoa School of Ocean and Earth Science and Technology (SOEST) combines biogeochemistry and direct marine ecology observations to show how the global mercury cycle is colliding with ocean fish—and the human seafood supply—at different depths in the water. Mercury accumulation in the ocean fish we eat tends to take place at deeper depths, scientists ...

Study finds rattling ions limit heat flow in materials used to reduce carbon emissions

2013-08-26
A new study published today in the journal Nature Materials has found a way to suppress the thermal conductivity in sodium cobaltate so that it can be used to harvest waste energy. Led by scientists at Royal Holloway University, the team conducted a series of experiments on crystals of sodium cobaltate grown in the University's Department of Physics. X-ray and neutron scattering experiments were carried out at the European Synchrotron Radiation Facility and in the Institut Laue-Langevin in Grenoble, using the UK's national supercomputer facility HECToR to make their ...

Scientists analyze the extent of ocean acidification

2013-08-26
Bremerhaven, 22 August 2013. Ocean acidification could change the ecosystems of our seas even by the end of this century. Biologists at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), have therefore assessed the extent of this ominous change for the first time. In a new study they compiled and analysed all available data on the reaction of marine animals to ocean acidification. The scientists found that whilst the majority of animal species investigated are affected by ocean acidification, the respective impacts are very specific. The ...

Researchers discover how inhibitory neurons behave during critical periods of learning

2013-08-26
PITTSBURGH—We've all heard the saying "you can't teach an old dog new tricks." Now neuroscientists are beginning to explain the science behind the adage. For years, neuroscientists have struggled to understand how the microcircuitry of the brain makes learning easier for the young, and more difficult for the old. New findings published in the journal Nature by Carnegie Mellon University, the University of California, Los Angeles and the University of California, Irvine show how one component of the brain's circuitry — inhibitory neurons — behave during critical periods ...

Cancer scientists discover novel way gene controls stem cell self-renewal

2013-08-26
(TORONTO, Canada – Aug. 25, 2013) – Stem cell scientists at the Princess Margaret Cancer Centre have discovered the gene GATA3 has a role in how blood stem cells renew themselves, a finding that advances the quest to expand these cells in the lab for clinical use in bone marrow transplantation, a procedure that saves thousands of lives every year. The research, published online today in Nature Immunology, provides an important piece in the puzzle of understanding the mechanisms that govern the blood stem cell self-renewal process, says principal investigator Norman Iscove, ...

LAST 30 PRESS RELEASES:

Reality check: making indoor smartphone-based augmented reality work

Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain

Black men — including transit workers — are targets for aggression on public transportation, study shows

Troubling spike in severe pregnancy-related complications for all ages in Illinois

Alcohol use identified by UTHealth Houston researchers as most common predictor of escalated cannabis vaping among youths in Texas

Need a landing pad for helicopter parenting? Frame tasks as learning

New MUSC Hollings Cancer Center research shows how Golgi stress affects T-cells' tumor-fighting ability

#16to365: New resources for year-round activism to end gender-based violence and strengthen bodily autonomy for all

Earliest fish-trapping facility in Central America discovered in Maya lowlands

São Paulo to host School on Disordered Systems

New insights into sleep uncover key mechanisms related to cognitive function

USC announces strategic collaboration with Autobahn Labs to accelerate drug discovery

Detroit health professionals urge the community to act and address the dangers of antimicrobial resistance

3D-printing advance mitigates three defects simultaneously for failure-free metal parts 

Ancient hot water on Mars points to habitable past: Curtin study

In Patagonia, more snow could protect glaciers from melt — but only if we curb greenhouse gas emissions soon

Simplicity is key to understanding and achieving goals

Caste differentiation in ants

Nutrition that aligns with guidelines during pregnancy may be associated with better infant growth outcomes, NIH study finds

New technology points to unexpected uses for snoRNA

Racial and ethnic variation in survival in early-onset colorectal cancer

Disparities by race and urbanicity in online health care facility reviews

Exploring factors affecting workers' acquisition of exercise habits using machine learning approaches

Nano-patterned copper oxide sensor for ultra-low hydrogen detection

Maintaining bridge safer; Digital sensing-based monitoring system

A novel approach for the composition design of high-entropy fluorite oxides with low thermal conductivity

A groundbreaking new approach to treating chronic abdominal pain

ECOG-ACRIN appoints seven researchers to scientific committee leadership positions

New model of neuronal circuit provides insight on eye movement

Cooking up a breakthrough: Penn engineers refine lipid nanoparticles for better mRNA therapies

[Press-News.org] Researchers uncover new biological target for combating Parkinson's disease
Compounds already exist to potentially treat both inherited and non-inherited cases