(Press-News.org) An innovative measurement method was used at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw for estimating power generated by motors of single molecule in size, comprising a few dozens of atoms only. The findings of the study are of crucial importance for construction of future nanometer machines – and they do not instil optimism.
Nanomachines are devices of the future. Composed of a very little number of atoms, they would be in the range of billionth parts of a meter in size. Construction of efficient nanomachines would lead most likely to another civilization revolution. That's why researchers around the world look at various molecules trying to put them at mechanical work.
Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw were among the first to have measured the efficiencies of molecular machines composed of a few dozen of atoms. "Everything points to the belief that the power of motors composed of single, relatively small molecules is considerably less than expected", says Dr Andrzej Żywociński from the IPC PAS, one of the co-authors of the paper published in the "Nanoscale" journal.
Molecular motors studied at the IPC PAS are molecules of smectic C*-type liquid crystals, composed of a few tens of atoms (each molecule is 2.8 nanometer long). After depositing on the surface of water, the molecules, under appropriate conditions, form spontaneously the thinnest layer possible – a monomolecular layer of specific structure and properties. Each liquid crystal molecule is composed of a chain with its hydrophilic terminal anchored on the surface of water. A relatively long, tilted hydrophobic part protrudes over the surface. So, monomolecular layer resembles a forest with trees growing at certain angle. The free terminal of each chain includes two crosswise arranged groups of atoms with different sizes, forming a two-blade propeller with blades of different lengths. When evaporating water molecules strike the "propellers", the entire chain starts to rotate around its "anchor" due to asymmetry.
Specific properties of liquid crystals and the conditions of experiment give rise to an in-phase motion of adjacent molecules in the monolayer. It is estimated that "tracts of the forest" of up to one trillion (10^12) molecules, forming areas of millimeter sizes on the surface of water, are able to synchronise their rotations. "Moreover, the molecules we studied were rotating very slowly. One rotation could be as long as a few seconds up to a few minutes. This is a much desired property. Would the molecules be rotating with, for instance, megahertz frequencies, their energy could be hardly transferred on larger objects", explains Dr Żywociński.
Earlier power estimations for molecular nanomotors were related either to much larger molecules, or to motors powered by chemical reactions. In addition, these estimations did not account for the resistance of the medium where the molecules worked.
Free, collective rotations of liquid crystal molecules on the surface of water can be easily observed and measured. Researchers from the IPC PAS checked how the speed of rotation changes as a function of temperature; they estimated also changes in (rotational) viscosity in the system under study. It turned out that the energy of single molecule motion generated during one rotation is very low: just 3.5•10^-28 joule. This value is as many as ten million times lower than the thermal motion energy.
"Our measurements are a bucket of cold water for designers of molecular nanomachines", notices Prof. Robert Hołyst (IPC PAS).
In spite of generating low power, rotating liquid crystal molecules can find practical applications. This is due to the fact that a large ensemble of collectively rotating molecules generates a correspondingly higher power. Moreover, a single square centimeter of the surface of water can accommodate many such ensembles with trillions of molecules each.
The same research at the IPC PAS included also a comparison of power generated by rotating molecules of liquid crystals with the power of a single biological motor – a very large molecule known as adenosinetriphosphatase (ATPase). The enzyme plays a role of sodium-potassium pump in animal cells. With appropriate calculations it was estimated that the density of energy generated in a volume unit was about 100,000 times higher for ATPase than for rotating liquid crystals.
"It took millions of years for evolution to develop such an efficient molecular pump. We, humans, have been working with molecular machines for a couple or maybe a dozen of years only", comments Prof. Hołyst and adds: "Give us just a bit of time".
INFORMATION:
This press release was prepared thanks to the NOBLESSE grant under the activity "Research potential" of the 7th Framework Programme of the European Union.
The Institute of Physical Chemistry of the Polish Academy of Sciences was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialise specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually.
Molecular motors: Power much less than expected?
2013-08-28
ELSE PRESS RELEASES FROM THIS DATE:
UK children less likely to be diagnosed with ADHD
2013-08-28
New research suggests that children are far less likely to be diagnosed with Attention deficit hyperactivity disorder (ADHD) in the UK than they are in the USA. However, the same study, led by the University of Exeter Medical School, suggests that autism diagnosis is still rising. The study is published online in the Journal of Autism Developmental Disorders, published by Springer, and was supported by the NIHR Collaboration for Leadership in Applied Health Research and Care in the South West Peninsula (NIHR PenCLAHRC).
ADHD is thought to be the most common disorder of ...
Not the end of the world: Why Earth's greatest mass extinction was the making of modern mammals
2013-08-28
The first mammals arose in the Triassic period, over 225 million years ago. These early furballs include small shrew-like animals such as Morganucodon from England, Megazostrodon from South Africa, and Bienotherium from China.
They had differentiated teeth (incisors, canines, molars) and large brains and were probably warm-blooded and covered in fur – all characteristics that make them stand apart from their reptile ancestors, and which contribute to their huge success today.
However, new research from the University of Lincoln, the National Museum in Bloemfontein, ...
Butterfly wings + carbon nanotubes = new 'nanobiocomposite' material
2013-08-28
Leveraging the amazing natural properties of the Morpho butterfly's wings, scientists have developed a nanobiocomposite material that shows promise for wearable electronic devices, highly sensitive light sensors and sustainable batteries. A report on the new hybrid material appears in the journal ACS Nano.
Eijiro Miyako and colleagues explain that Morpho butterfly wings have natural properties that are beyond the capabilities of any current technology to reproduce artificially. In addition to being lightweight, thin and flexible, the butterfly's wings absorb solar energy, ...
Oldest solar twin identified
2013-08-28
Astronomers have only been observing the Sun with telescopes for 400 years — a tiny fraction of the Sun's age of 4.6 billion years. It is very hard to study the history and future evolution of our star, but we can do this by hunting for rare stars that are almost exactly like our own, but at different stages of their lives. Now astronomers have identified a star that is essentially an identical twin to our Sun, but 4 billion years older — almost like seeing a real version of the twin paradox in action [1].
Jorge Melendez (Universidade de São Paulo, Brazil), the leader ...
MOND predicts dwarf galaxy feature prior to observations
2013-08-28
A modified law of gravity correctly predicted, in advance of the observations, the velocity dispersion -- the average speed of stars within a galaxy relative to each other -- in 10 dwarf satellite galaxies of the Milky Way's giant neighbor Andromeda.
The relatively large velocity dispersions observed in these types of dwarf galaxies is usually attributed to dark matter. Yet predictions made using the alternative hypothesis Modified Newtonian Dynamics (MOND) succeeded in anticipating the observations.
Stacy McGaugh, professor of astronomy at Case Western Reserve, and ...
Using a form of 'ice that burns' to make potable water from oil and gas production
2013-08-28
In the midst of an intensifying global water crisis, scientists are reporting development of a more economical way to use one form of the "ice that burns" to turn very salty wastewater from fracking and other oil and gas production methods into water for drinking and irrigation. The study on the method, which removes more than 90 percent of the salt, appears in the journal ACS Sustainable Chemistry & Engineering.
Yongkoo Seol and Jong-Ho Cha explain that salty wastewater is a byproduct of oil and gas production, including hydraulic fracturing, or fracking. These methods ...
Producing hydrogen from water with carbon/charcoal powder
2013-08-28
In the latest advance in efforts to find an inexpensive way to make hydrogen from ordinary water — one of the keys to the much-discussed "hydrogen economy" — scientists are reporting that powder from high-grade charcoal and other forms of carbon can free hydrogen from water illuminated with laser pulses. A report on the discovery appears in ACS' Journal of Physical Chemistry C.
Ikuko Akimoto and colleagues point out that traditional approaches to breaking down water, which consists of hydrogen and oxygen, involve use of expensive catalysts or electric current passed through ...
Remembering a famous debate 400 years ago and water's still-unsolved mysteries
2013-08-28
For online and print audiences deep into lazy late-summer-day reading, yearning for diversions from everyday cares, how about a glimpse 400 years back in time at a famous clash between Galileo and an arch-enemy over why ice floats on water? That debate, between a giant in the history of science and a little-remembered naysayer who challenged Galileo's idea that Earth revolves around the sun, is the topic of a story in the current edition of Chemical & Engineering News. C&EN is the weekly newsmagazine of the American Chemical Society, the world's largest scientific society.
Sarah ...
Canada has strength in industrial R&D, says expert panel
2013-08-28
VIDEO:
The Council's report, The State of Industrial R&D in Canada, provides an in-depth analysis of research and development activities in Canadian industries. While many reports have documented Canada's historical weakness...
Click here for more information.
Ottawa (August 28, 2013) – A new expert panel report on research and development in Canadian industry has found that, despite Canada's historically poor performance in industrial R&D, four sectors of national strength ...
4 alcohol brands dominate popular music mentions
2013-08-28
Four alcohol brands—Patron tequila, Hennessy cognac, Grey Goose vodka, and Jack Daniel's whiskey—accounted for more than half of alcohol brand mentions in the songs that mentioned alcohol use in Billboard's most popular song lists in 2009, 2010 and 2011, according to a new study from researchers at the Boston University School of Public Health and the Center on Alcohol Marketing and Youth (CAMY) at the Johns Hopkins Bloomberg School of Public Health.
The study, published online by Substance Use & Misuse and the first to examine the context of specific brand mentions in ...