(Press-News.org) (SACRAMENTO, Calif.) — Stem cell technology has long offered the hope of regenerating tissue to repair broken or damaged neural tissue. Findings from a team of UC Davis investigators have brought this dream a step closer by developing a method to generate functioning brain cells that produce myelin — a fatty, insulating sheath essential to normal neural conduction.
"Our findings represent an important conceptual advance in stem cell research," said Wenbin Deng, principal investigator of the study and associate professor at the UC Davis Department of Biochemistry and Molecular Medicine. "We have bioengineered the first generation of myelin-producing cells with superior regenerative capacity."
The brain is made up predominantly of two cell types: neurons and glial cells. Neurons are regarded as responsible for thought and sensation. Glial cells surround, support and communicate with neurons, helping neurons process and transmit information using electrical and chemical signals. One type of glial cell — the oligodendrocyte — produces a sheath called myelin that provides support and insulation to neurons. Myelin, which has been compared to insulation around electrical wires that helps to prevent short circuits, is essential for normal neural conduction and brain function; well-recognized conditions involving defective myelin development or myelin loss include multiple sclerosis and leukodystrophies.
In this study, the UC Davis team first developed a novel protocol to efficiently induce embryonic stem cells (ESCs) to differentiate into oligodendroglial progenitor cells (OPCs), early cells that normally develop into oligodendrocytes. Although this has been successfully done by other researchers, the UC Davis method results in a purer population of OPCs, according to Deng, with fewer other cell types arising from their technique.
They next compared electrophysiological properties of the derived OPCs to naturally occurring OPCs. They found that unlike natural OPCs, the ESC-derived OPCs lacked sodium ion channels in their cell membranes, making them unable to generate spikes when electrically stimulated. Using a technique called viral transduction, they then introduced DNA that codes for sodium channels into the ESC-derived OPCs. These OPCs then expressed ion channels in their cells and developed the ability to generate spikes.
According to Deng, this is the first time that scientists have successfully generated OPCs with so-called spiking properties. This achievement allowed them to compare the capabilities of spiking cells to non-spiking cells.
In cell culture, they found that only spiking OPCs received electrical input from neurons, and they showed superior capability to mature into oligodendrocytes.
They also transplanted spiking and non-spiking OPCs into the spinal cord and brains of mice that are genetically unable to produce myelin. Both types of OPCs had the capability to mature into oligo-dendrocytes and produce myelin, but those from spiking OPCs produced longer and thicker myelin sheaths around axons.
"We actually developed 'super cells' with an even greater capacity to spike than natural cells," Deng said. "This appears to give them an edge for maturing into oligodendrocytes and producing better myelin."
It is well known that adult human neural tissue has a poor capacity to regenerate naturally. Although early cells such as OPCs are present, they do not regenerate tissue very effectively when disease or injury strikes.
Deng believes that replacing glial cells with the enhanced spiking OPCs to treat neural injuries and diseases has the potential to be a better strategy than replacing neurons, which tend to be more problematic to work with. Providing the proper structure and environment for neurons to live may be the best approach to regenerate healthy neural tissue. He also notes that many diverse conditions that have not traditionally been considered to be myelin-related diseases -- including schizophrenia, epilepsy and amyotrophic lateral sclerosis (ALS) -- actually are now recognized to involve defective myelin.
The article, titled "Generation and characterization of spiking and non-spiking oligodendroglial progenitor cells from embryonic stem cells," is available online at http://www.ncbi.nlm.nih.gov/pubmed/23940003 in the journal Stem Cells.
INFORMATION:Other study authors affiliated with the UC Davis Department of Biochemistry and Molecular Medicine and/or the Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children are Peng Jiang, Chen Chen, Vimal Selvaraj, Wei Lu, Daniel Feldman and David Pleasure. The team also included Xiao-Bo Liu of the UC Davis Center for Neuroscience, and Ronald Li, who was at UC Davis at the time of the research, and now at the University of Hong Kong, China, and Ying Liu, now with the University of Texas Health Science Center at Houston.
This research was supported by grants from the National Institutes of Health (R01NS061983 and R01ES015988, the National Multiple Sclerosis Society, ShrinersHospitals for Children and the California Institute for Regenerative Medicine.
UC Davis is playing a leading role in regenerative medicine, with nearly 150 scientists working on a variety of stem cell-related research projects at campus locations in both Davis and Sacramento. The UC Davis Institute for Regenerative Cures, a facility supported by the California Institute for Regenerative Medicine (CIRM), opened in 2010 on the Sacramento campus. This $62 million facility is the university's hub for stem cell science. It includes Northern California's largest academic Good Manufacturing Practice laboratory, with state-of-the-art equipment and manufacturing rooms for cellular and gene therapies. UC Davis also has a Translational Human Embryonic Stem Cell Shared Research Facility in Davis and a collaborative partnership with the Institute for Pediatric Regenerative Medicine at Shriners Hospital for Children Northern California. All of the programs and facilities complement the university's Clinical and Translational Science Center, and focus on turning stem cells into cures. For more information, visit http://www.ucdmc.ucdavis.edu/stemcellresearch.
END
Researchers have created a model that may explain the complexities of the origins of life. Their work, which appears in the Journal of the Royal Society Interface, offers new insights into how RNA signaling likely developed into the modern "genetic code."
"Our model shows that today's genetic code probably resulted from a combination of selective forces and random chance," explained Justin Jee, a doctoral student at NYU School of Medicine and the paper's lead author.
The study's other co-authors included: Bud Mishra, who has appointments at NYU's Courant Institute ...
Researchers at the National Institute of Allergy and Infectious Diseases (NIAID) and the National Heart, Lung, and Blood Institute, both part of the National Institutes of Health, have identified the cells in two distinct areas of the body that are simultaneously targeted for damage by anthrax toxins, eventually causing illness and sometimes death. Their findings, which appeared online today in Nature, are based on testing in mice. However, the results may contribute to the development of anthrax treatments for humans, the researchers say.
Anthrax disease is caused by ...
ARCATA, Calif.—Woodland salamanders are a viable indicator of forest ecosystem recovery, according to researchers from the U.S. Forest Service's Pacific Southwest Research Station.
PSW Research Wildlife Biologist Dr. Hartwell Welsh and Garth Hodgson examined two species of woodland salamanders across four stages of tree development at Mill Creek—a disturbed old-growth redwood forest in northern California. They found that the numbers and body condition of two common species of salamander tracked closely with forest stand growth, development, and structural changes. Using ...
When a beating heart slips into an irregular, life-threatening rhythm, the treatment is well known: deliver a burst of electric current from a pacemaker or defibrillator. But because the electricity itself can cause pain, tissue damage and other serious side-effects, a Johns Hopkins-led research team wants to replace these jolts with a kinder, gentler remedy: light.
In a paper published Aug. 28 in the online journal Nature Communications, five biomedical engineers from Johns Hopkins and Stony Brook universities described their plan to use biological lab data and an intricate ...
GRAND RAPIDS, Mich. — Reversing inflammation in the fluid surrounding the brain's cortex may provide a solution to the complex riddle of Parkinson's, according to researchers who have found a link between pro-inflammatory biomarkers and the severity of symptoms such as fatigue, depression and anxiety in patients with the chronic disease.
Lena Brundin of Michigan State University's College of Human Medicine was part of a research team that measured inflammatory markers found in cerebrospinal fluid samples of Parkinson's patients and members of a control group.
"The degree ...
MADISON, Wis. – Teachers who practice "mindfulness" are better able to reduce their own levels of stress and prevent burnout, according to a new study conducted by the Center for Investigating Healthy Minds (CIHM) at the University of Wisconsin-Madison Waisman Center.
The results of the study, led by Assistant Scientist Lisa Flook, were recently published in the journal Mind, Brain and Education.
Mindfulness, a notion that stems from centuries-old meditative traditions and is now taught in a secular way, is a technique to heighten attention, empathy and other pro-social ...
VIDEO:
A study led by University of Miami scientist Claire Paris, which appears in the Aug. 28 edition of PLOS ONE, was designed to test the response of larvae in a...
Click here for more information.
MIAMI – August 28, 2013 --How tiny fish larvae travel away from the reef, then know how to navigate their way back home is a scientific mystery.
A new study led by Dr. Claire Paris, Professor at the University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science ...
Cambridge, Mass. – August 28, 2013 – Research by environmental scientists at the Harvard School of Engineering and Applied Sciences (SEAS) brings bad news to the western United States, where firefighters are currently battling dozens of fires in at least 11 states.
The Harvard team's study suggests wildfire seasons by 2050 will be about three weeks longer, up to twice as smoky, and will burn a wider area in the western states. The findings are based on a set of internationally recognized climate scenarios, decades of historical meteorological data, and records of past ...
An international team of researchers coordinated by ornithologist Bret Whitney of the LSU Museum of Natural Science, or LSUMNS, recently published 15 species of birds previously unknown to science. The formal description of these birds has been printed in a special volume of the "Handbook of the Birds of the World" series. Not since 1871 have so many new species of birds been introduced under a single cover, and all 15 discoveries involve a current or former LSU researcher or student.
"Birds are, far and away, the best-known group of vertebrates, so describing a large ...
For the first time, astronomers have seen the image of a distant quasar split into multiple images by the effects of a cloud of ionized gas in our own Milky Way Galaxy. Such events were predicted as early as 1970, but the first evidence for one now has come from the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope system.
The scientists observed the quasar 2023+335, nearly 3 billion light-years from Earth, as part of a long-term study of ongoing changes in some 300 quasars. When they examined a series of images of 2023+335, they noted dramatic ...