(Press-News.org) For years, physicians around the world have watched as strain after strain of the deadly bacteria Mycobacterium tuberculosis evolves resistance to drugs.
Over the last few decades researchers have used the tools of molecular biology to identify a handful of individual mutations that allow TB to withstand many of the key therapeutics that doctors use to treat it. These genetic markers serve as clues for new drug development and as tools for diagnosing drug-resistant strains of TB. But the pace of discovery has proven too slow in the face of the complex array of rapidly mutating bacterial strains.
A new method of analyzing whole genome sequences of TB, applied to a massive set of strains of the bacteria collected from clinics around the world, has revealed 39 new genes associated with elevated drug resistance. The results were published Sept. 1, 2013 in Nature Genetics.
"We have found that more genes might be implicated in resistance than previously thought, and this means that we can start to unravel the role of these genes," said Megan Murray, HMS professor of global health and social medicine. "This is significant because it implicates new mechanisms in the evolution of resistance that can be further studied now and raises the possibility of more specific targets for the detection of resistance through molecular methods."
These new data suggest that acquiring resistance is a multistep process, perhaps requiring low-level resistance mutations prior to the ones that are well known. The findings also suggest that some of these new genes are involved in resistance that may confer "global" resistance traits, helping strains become resistant to a group of antibiotics rather than just one or a single class.
"Several of the genes we identified are related to the bacteria's regulation of cell walls; since many classes of drugs target the cell walls, we speculate that changes to the structure or metabolism of the cell walls might confer resistance to a wide variety of drugs," said first author Maha Farhat, HMS instructor in medicine and assistant physician at Massachusetts General Hospital.
"Until now, people assumed that single mutations conferred high-level resistance—a strain either had them or did not—but our results challenge that paradigm," Murray said. "Knowing that small changes early in the evolution of resistance open the door for big changes, or that a single change is a gateway to global resistance, would be important clues in our struggle to outrace evolving drug resistance."
Murray is part of a network of researchers and physicians working to develop a holistic, integrative approach to understanding and treating TB. In addition to her role as a researcher at HMS, she is also an associate professor of medicine at Brigham and Women's Hospital and professor in the Department of Epidemiology in the Harvard School of Public Health (HSPH), director of research at Partners in Health and director of the HMS Global Health and Social Medicine Research Core.
"We're not only implementing programs and documenting outcomes, we're using our access to clinics around the world to further basic scientific research, which will ultimately help improve standards of care," Murray said.
To find the novel drug-resistance genes, Farhat, Murray and collaborators adapted tools from evolutionary biology known as "phylogenetics." Phylogenetics allows the study of relationships within populations of organisms. It was originally developed to trace the path of evolution and to calculate how once-related organisms diverged onto different branches of the tree of life over many tens of thousands of years.
The team adapted these tools to measure the rapid-fire evolution of drug-resistant TB in the clinic.
They examined the whole genomes of 116 newly sequenced and 7 previously sequenced strains of TB. The sample included 47 strains with various levels of resistance to a variety of anti-TB drugs, as well as a group of susceptible strains, to allow the researchers to assess the genetic diversity of TB in the wild.
The method allows researchers to focus on the moments when resistant and susceptible strains branch off from one another. This silences the background noise of random mutations that aren't associated with resistance.
"You're tuning out all the changes that happened to their common ancestors, which allows you to look specifically at what the differences between the daughter lineages were when resistance evolved," Farhat said.
The project used a large set of clinical strains collected from human populations rather than strains that were developed in the lab. They sampled strains from outbreaks in British Columbia, Rome, South Africa and Russia. The strains came from dozens of sites around the world, including most of the major lineages of susceptible TB currently circulating around the world. This large, diverse data set was crucial to gaining insight into how resistant strains evolve in human populations.
They also needed a community of clinicians and researchers who were prepared to work across disciplines
"Making progress on understanding and fighting complex, global diseases like TB requires a community of physicians and scientists who are not only each working in their own niches, but building a collaborative ecosystem to share data, perspectives and results in order to push the work forward," Murray said.
One key collaboration was with Eric Rubin, HSPH professor of immunology and infectious diseases, and Karen Keiser, a graduate research fellow at HSPH. One of the new sites of resistance was found in ponA1, a gene that is important to TB cell wall function. Rubin and Keiser introduced this mutation into laboratory TB strains and found a small yet significant elevation in their levels of resistance to the TB drug rifampicin.
The small elevation in the resistance levels suggest that resistance is more complex than previously recognized and that likely multiple small mutations may act synergistically to result in full-blown resistance.
Drug resistance is a huge problem in TB, Murray said. In some settings in Eastern Europe, up to half of TB is multi-drug resistant. Extensively resistant strains have evolved that are very difficult to treat, and some strains in India and Iraq are virtually untreatable.
"We don't really understand why resistance develops so consistently," Murray said. "This study may provide a lens that we can use to see a way to develop better diagnostics for impending resistance, or even ways to prevent it from happening."
###
This study was funded by the Senior Ellison Foundation; and the Massachusetts General Hospital Division of Pulmonary and Critical Care.
Harvard Medical School has more than 7,500 full-time faculty working in 11 academic departments located at the School's Boston campus or in one of 47 hospital-based clinical departments at 16 Harvard-affiliated teaching hospitals and research institutes. Those affiliates include Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Cambridge Health Alliance, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care, Hebrew Senior Life, Joslin Diabetes Center, Judge Baker Children's Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital and VA Boston Healthcare System.
Researchers untangle genetics of drug resistant TB
Adapting tools of evolutionary biology to study the epidemiology of outbreaks reveals 39 new genes implicated in drug resistance
2013-09-02
ELSE PRESS RELEASES FROM THIS DATE:
Mycobacterium tuberculosis: Our African follower for over 70,000 years!
2013-09-02
Tuberculosis (TB) remains one of deadliest infectious diseases of humans, killing 50% of individuals when left untreated. Even today, TB causes 1-2 million deaths every year mainly in developing countries. Multidrug-resistance is a growing threat in the fight against the disease.
An international group of researchers led by Sebastien Gagneux from the Swiss Tropical and Public Health Institute (Swiss TPH) has now identified the origin in time and space of the disease. Using whole-genome sequencing of 259 Mycobacterium tuberculosis strains collected from different parts ...
DNA 'cages' may aid drug delivery
2013-09-02
Nanoscale "cages" made from strands of DNA can encapsulate small-molecule drugs and release them in response to a specific stimulus, McGill University researchers report in a new study.
The research, published online Sept. 1 in Nature Chemistry, marks a step toward the use of biological nanostructures to deliver drugs to diseased cells in patients. The findings could also open up new possibilities for designing DNA-based nanomaterials.
"This research is important for drug delivery, but also for fundamental structural biology and nanotechnology," says McGill Chemistry ...
Breakthrough in sensing at the nanoscale
2013-09-02
Researchers have made a breakthrough discovery in identifying the world's most sensitive nanoparticle and measuring it from a distance using light. These super-bright, photostable and background-free nanocrystals enable a new approach to highly advanced sensing technologies using optical fibres.
This discovery, by a team of researchers from Macquarie University, the University of Adelaide, and Peking University, opens the way for rapid localisation and measurement of cells within a living environment at the nanoscale, such as the changes to a single living cell in the ...
Increased greenhouse gases and aerosols have similar effects on rainfall
2013-09-02
Although greenhouse gases and aerosols have very distinct properties, their effects on spatial patterns of rainfall change are surprisingly similar, according to new research from the University of Hawaii at Manoa's International Pacific Research Center (IPRC) and Scripps Institution of Oceanography. The study is published in the September 1 online issue of Nature Geoscience.
Manmade climate change comes mostly from the radiative forcing of greenhouse gases and air pollutants or aerosols. While greenhouse gases are well-mixed in the atmosphere and tend to be evenly distributed ...
New data reveals that the average height of European males has grown by 11cm in just over a century
2013-09-02
The average height of European males increased by an unprecedented 11cm between the mid-nineteenth century and 1980, according to a new paper published online today in the journal Oxford Economic Papers. Contrary to expectations, the study also reveals that average height actually accelerated in the period spanning the two World Wars and the Great Depression.
Timothy J. Hatton, Professor of Economics at the University of Essex and the Research School of Economics at Australian National University in Canberra, examined and analysed a new dataset for the average height ...
World-leading penguin experts come to Britain
2013-09-02
Research: New research has revealed how the Emperor Penguin is able to dive to depths of over 500m and stay under water for up to 27 minutes – deeper and longer than any of its fellow avian species.
Researchers from the University of California will be presenting their new findings at the International Penguin Conference (IPC) which begins in Bristol today [02 September].
It's the first time the conference has been held in Europe, with 200 delegates from 30 countries sharing their latest research and knowledge at the University of Bristol and Bristol Zoo Gardens between ...
Droplet Digital PCR enables reproducible quantification of microRNA biomarkers
2013-09-02
Seattle, Wash. — September 1, 2013 — A study published online in Nature Methods today demonstrated that Droplet Digital PCR (ddPCR™) technology can be used to precisely and reproducibly quantify microRNA (miRNA) in plasma and serum across different days, paving the way for further development of miRNA and other nucleic acids as circulating biomarkers.
"In the field of circulating microRNA diagnostics, droplet digital PCR enables us to finally perform biomarker studies in which the measurements are directly comparable across days within a laboratory and even among different ...
Stanford scientists show how antibiotics enable pathogenic gut infections
2013-09-02
STANFORD, Calif. — A new study by researchers at the Stanford University School of Medicine could help pinpoint ways to counter the effects of the antibiotics-driven depletion of friendly, gut-dwelling bacteria.
A number of intestinal pathogens can cause problems after antibiotic administration, said Justin Sonnenburg, PhD, assistant professor of microbiology and immunology and the senior author of the study, to be published online Sept. 1 in Nature. Graduate students Katharine Ng and Jessica Ferreyra shared lead authorship.
"Antibiotics open the door for these pathogens ...
Scientists sequence genome of high-value grape, seek secrets of wine's aroma
2013-09-02
Demystifying the chemical processes that create a wine's aroma, and the invaluable potential application of that understanding in winemaking, is the new objective of scientists in Uruguay who, with European partners, also recently sequenced the genome of the high-value Tannat grape, from which "the most healthy of red wines" are fermented.
Meanwhile, a quick, $1 test in development by researchers in Paraguay and Uruguay promises to reduce the economic and health burden of 3 million cases of syphilis in Latin America -- a disease readily treated and cured if diagnosed ...
Drug reduces hospitalizations and cost of treating young children with sickle cell anemia
2013-09-02
A drug proven effective for treatment of adults and children with sickle cell anemia reduced hospitalizations and cut annual estimated medical costs by 21 percent for affected infants and toddlers, according to an analysis led by St. Jude Children's Research Hospital. The report appears today in the advance online edition of the journal Pediatrics.
The study is the largest ever focusing on the economic impact of the drug hydroxyurea in children with the inherited blood disorder. The result supports expanded use of the drug to extend the length and quality of life for ...
LAST 30 PRESS RELEASES:
New tablet shows promise for the control and elimination of intestinal worms
Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston
Depression – discovering faster which treatment will work best for which individual
Breakthrough study reveals unexpected cause of winter ozone pollution
nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory
Generative AI: Uncovering its environmental and social costs
Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure
Dangerous bacterial biofilms have a natural enemy
Food study launched examining bone health of women 60 years and older
CDC awards $1.25M to engineers retooling mine production and safety
Using AI to uncover hospital patients’ long COVID care needs
$1.9M NIH grant will allow researchers to explore how copper kills bacteria
New fossil discovery sheds light on the early evolution of animal nervous systems
A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior
Study shows how plant roots access deeper soils in search of water
Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs
‘What is that?’ UCalgary scientists explain white patch that appears near northern lights
How many children use Tik Tok against the rules? Most, study finds
Scientists find out why aphasia patients lose the ability to talk about the past and future
Tickling the nerves: Why crime content is popular
Intelligent fight: AI enhances cervical cancer detection
Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion
Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions
Radon exposure and gestational diabetes
EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society
Medicare rules may reduce prescription steering
Red light linked to lowered risk of blood clots
Menarini Group and Insilico Medicine enter a second exclusive global license agreement for an AI discovered preclinical asset targeting high unmet needs in oncology
Climate fee on food could effectively cut greenhouse gas emissions in agriculture while ensuring a social balance
Harnessing microwave flow reaction to convert biomass into useful sugars
[Press-News.org] Researchers untangle genetics of drug resistant TBAdapting tools of evolutionary biology to study the epidemiology of outbreaks reveals 39 new genes implicated in drug resistance