PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Faulty internal recycling by brain's trash collectors may contribute to Alzheimer's

2013-09-04
(Press-News.org) STANFORD, Calif. — A defective trash-disposal system in the brain's resident immune cells may be a major contributor to neurodegenerative disease, a scientific team from the Stanford University School of Medicine has found.

Preliminary observations show that this defect appears in the brains of patients who died of Alzheimer's disease, so correcting it may someday prove to be an effective way of preventing or slowing the course of the disease.

"We were fortunate in being able to compare microglia — the brain's own immune cells — from five patients who died of Alzheimer's disease with five who died of other causes," said Tony Wyss-Coray, PhD, professor of neurology and neurological sciences at the medical school and senior research career scientist at the Veterans Affairs Palo Alto Health Care System. "And we discovered that in Alzheimer's disease, the microglia are defective. One of these cells' main functions, removing garbage, is impaired."

Wyss-Coray is the senior author of the study, which will be published Sept. 4 in Neuron. The lead author was postdoctoral scholar Kurt Lucin, PhD.

Microglia, one of several important cell types in the brain, serve as both cops and trash collectors. These immune cells continuously police the brain, making sure everything is running smoothly. When they sense a pathogen, they pull out the molecular equivalent of a pistol. If they spot a dead cell or a clump of protein detritus, they don a pair of overalls and hasten to remove it.

They do this by engulfing and ingesting the target in a process called phagocytosis. Many cells can do this, but microglia are the pros — and they'd better be, said Wyss-Coray. "If they don't clear up all the detritus in the brain efficiently, debris left lying around can trigger inflammation and consequent injury to neurons," he said.

Proteins called phagocytic receptors on the surface of microglia look out for characteristic earmarks of detritus, dead cells and potentially toxic substances such as A-beta, a protein widely implicated in Alzheimer's disease. A-beta is prone to clump into plaques that abound in the brains of people with Alzheimer's and, to a lesser extent, in the rest of us as we grow older.

When a targeted protein or piece of cellular debris is bound by a phagocytic receptor, part of the microglial cell's outer membrane forms a bubble that encloses the target, migrates inward and fuses with the cell's high-powered digestive machinery, which breaks down the ingested contents.

The phagocytic receptors, which have come along for the ride on the membranes engulfing the ingested materials, aren't digested, though. They are recycled, Wyss-Coray said. "Microglia don't constantly make brand-new receptors. Instead, existing ones are returned to the cell membrane by a very sophisticated multiprotein complex called the retromer, which effectively grabs the internalized receptors and shuttles them back to the cell surface."

But a defect in microglia's internal recycling program, the new study shows, can result in faulty phagocytosis, which in turn could allow A-beta to accumulate in aging brains. For example, it was recently discovered that a rare mutation in a key phagocytic receptor that binds to A-beta confers a three- to four-fold additional risk for Alzheimer's disease.

The researchers believe they have determined a culprit: beclin, a protein expressed in every cell in the body and known to be crucial to survival. They found that deficiencies in this protein impair the retromer's ability to steward phagocytic receptors back to microglial cell surfaces, with nasty consequences for neurons in the brain.

Beclin and the retromer apparatus are similar in mice and humans. So Wyss-Coray and his colleagues first looked at mouse microglia that had been altered to reduce beclin levels by more than half. These beclin-deficient microglia turned out to be less efficient at gobbling up latex beads, a proxy for cellular debris, than microglia with normal levels.

When the scientists injected A-beta into the brains of normal mice, their microglia cleared up this substance quickly, said Wyss-Coray. But in beclin-deficient mice, the microglia took much longer to get the job done.

The researchers also showed that in beclin-deficient cells, the recycling of a phagocytic receptor that binds A-beta was severely impaired.

Apparently beclin is required for adequate retromer function, Wyss-Coray said. "To our surprise, if beclin levels were low, all key components of the retromer were quite dramatically reduced. So, the receptor can't get back because the retromers aren't there."

When his team compared autopsied brains from five Alzheimer's patients and five people who had died of other causes, they saw that levels of both beclin and at least one of the retromer's protein components were diminished by as much as 80 percent in Alzheimer's brains.

"We didn't expect to see such dramatic differences in these proteins in human tissue. This has not been previously shown for any proteins in human microglia," Wyss-Coray said. "We have to take our findings about microglia in human brains with a grain of salt because we looked at only 10 brains in all. But the findings are exciting. If they're accurate, they show one way that microglia can become dysfunctional, and what the consequences can be."

Wyss-Coray said he still doesn't know what initially causes the drop in beclin levels. But other experiments suggested that beclin deficits in Alzheimer's brains are likely not resulting from the accumulation of A-beta deposits but preceding it, and may be contributing to it.

"Most research has focused on neurons," he said. "Our findings suggest that we should also be looking at other cell types that may be malfunctioning in the brain. If microglia don't work the way they're designed to work, a lot of problems may result."

These findings may also be relevant not just for Alzheimer's but for other age-related brain diseases. A mutation in one retromer protein has been implicated in Parkinson's, Wyss-Coray said. "If beclin decline turns out to be a part of normal aging, eventually A-beta or other protein aggregates, such as those that occur in Parkinson's disease, could arise."

###

Other Stanford co-authors of the study were graduate students Catilin O'Brien, Gregor Bieri and Kira Mosher; postdoctoral scholar Eva Czirr, PhD; and research associate Rachelle Abbey.

The study was funded by the Department of Veterans Affairs, the National Institutes of Health (grant 01AG030144), the California Institute for Regenerative Medicine, the Larry L. Hillblom Foundation and the John Douglas French Alzheimer's Foundation.

Information about Stanford's Department of Neurology and Neurological Sciences, which also supported this work, is available at http://neurology.stanford.edu.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Print media contact: Bruce Goldman at (650) 725-2106 (goldmanb@stanford.edu)
Broadcast media contact: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

END



ELSE PRESS RELEASES FROM THIS DATE:

Bizarre alignment of planetary nebulae

2013-09-04
Astronomers have used the NASA/ESA Hubble Space Telescope and ESO's New Technology Telescope to explore more than 100 planetary nebulae in the central bulge of our galaxy. They have found that butterfly-shaped members of this cosmic family tend to be mysteriously aligned — a surprising result given their different histories and varied properties. The final stages of life for a star like our Sun result in the star puffing its outer layers out into the surrounding space, forming objects known as planetary nebulae in a wide range of beautiful and striking shapes. One type ...

University research team's new approach enhances quantum-based secure communication

2013-09-04
University of Calgary scientists have overcome an 'Achilles' heel' of quantum-based secure communication systems, using a new approach that works in the real world to safeguard secrets. The team's research – published in the journal Physical Review Letters back-to-back with similar work by a group from Hefei, China – also removes a big obstacle to realizing future applications of quantum communication, including a fully functional quantum network. "I hope that our new quantum key distribution (QKD) system shows to people who take security seriously that QKD has many ...

Study: Simian foamy viruses readily occur between humans and macaques in urban Bangladesh

2013-09-04
Throughout Asia, humans and monkeys live side-by side in many urban areas. An international research team from the University of Washington, Fred Hutchinson Cancer Research Center and Jahangirnagar University has been examining transmission of a virus from monkeys to humans in Bangladesh, one of the world's most densely populated countries. The scientists have found that some people in these urban areas are concurrently infected with multiple strains of simian foamy virus (SFV), including strains from more than one source (recombinant) that researchers originally detected ...

Study shows that people who undergo cataract surgery to correct visual impairment live longer

2013-09-04
SAN FRANCISCO – Sept. 4, 2013 – People with cataract-related vision loss who have had cataract surgery to improve their sight are living longer than those with visual impairment who chose not to have the procedure, according to an Australian cohort study published this month in Ophthalmology, the journal of the American Academy of Ophthalmology. After comparing the two groups, the researchers found a 40 percent lower long-term mortality risk in those who had the surgery. The research is drawn from data gathered in the Blue Mountains Eye Study, a population-based cohort ...

Antioxidant effect of resveratrol in the treatment of vascular dementia

2013-09-04
Resveratrol, a polyphenolic compound, is synthesized in several plants and possesses beneficial biological effects, which include anti-oxidant, anti-inflammatory and anti-carcinogenic properties. Resveratrol exhibits neuroprotective effects in models of many diseases, such as cerebral ischemia, Huntington's disease, Parkinson's disease and Alzheimer's disease. However, there is a lack of data evaluating the effect of resveratrol in vascular dementia. Dr Boai Zhang and team from the First Affiliated Hospital, Zhengzhou University found that resveratrol improved learning ...

Platelet Golgi apparatus and their significance after acute cerebral infarction

2013-09-04
Expression of soluble CD40L has been shown to increase sig-nificantly in conditions such as stroke, myocardial infarction, unstable angina, high cholesterol, or other cardiovascular events. 95% of the circulating CD40L exists in activated platelets. However, the specific pathway of the transition of CD40L is not elucidated, and whether Golgi apparatus is involved in the expression of platelet CD40L still needs to be proven. Dr. Wei Lu and colleagues from Second Xiangya Hospital, Central South University, found that platelet Golgi apparatus displayed significant morphological ...

Researchers produce nanostructures with potential to advance energy devices

2013-09-04
TEMPE. Ariz. -- New types of nanostructures have shown promise for applications in electrochemically powered energy devices and systems, including advanced battery technologies. One process for making these nanostructures is dealloying, in which one or more elemental components of an alloy are selectively leached out of materials. Arizona State University researchers Karl Sieradzki and Qing Chen have been experimenting with dealloying lithium-tin alloys, and seeing the potential for the nanostructures they are producing to spark advances in lithium-ion batteries, as ...

Biomaterials for repair of long-segment peripheral nerve defects

2013-09-04
Autografts or allografts are commonly used in the repair of damaged peripheral nerves. However, similar problems have been encountered in allografting or xenografting. Previous studies concerning artificial neural tubes to repair nerve defects mainly focus on peripheral nerve defects less than 30 mm. Dr. Esmaeil Biazar and colleagues from Islamic Azad University, Iran investigate the feasibility of poly(3-hydroxy- butyrate-co-3-hydroxyvalerate) conduits in the repair of 30-mm sciatic nerve gap in a rat model. The researchers found that at 4 months after nerve conduit implantation, ...

Best of ESC Congress 2013

2013-09-04
Amsterdam, 4 September 2013: Close to thirty thousand delegates converged from all over the world, to the ESC Congress 2013 in Amsterdam, The Netherlands, this week. Cardiologists came to hear first-hand about the latest research. "A record number of Hot Lines and scientific sessions with new formats allowed for more exchanges between peers presenting results of clinical trials, new Clinical Practice Guidelines and new devices and treatments," said Professor Keith Fox, Chair of the ESC Scientific Programme Committee. We have much to learn from each other! Some of the most ...

New groundbreaking research may expose new aspects of the universe

2013-09-04
"New physics is about searching for unknown physical phenomena not known from the current perception of the universe. Such phenomena are inherently very difficult to detect," explains PhD student Matin Mojaza from CP3-Origins. Together with colleagues Stanley J. Brodsky from Stanford University in the U.S. and Xing-Gang Wu from Chongqing University in China, Mojaza has now succeeding in creating a new method that can make it easier to search for new physics in the universe. The method is a so called scalesetting procedure, and it fills out some empty, but very ...

LAST 30 PRESS RELEASES:

New insights into tRNA-derived small RNAs offer hope for digestive tract disease diagnosis and treatment

Emotive marketing for sustainable consumption?

Prostate cancer is not a death knell, study shows

Unveiling the role of tumor-infiltrating immune cells in endometrial carcinoma

Traditional Chinese medicine unlocks new potential in treating diseases through ferroptosis regulation

MSU study pinpoints the impact of prenatal stress across 27 weeks of pregnancy

Biochemist’s impact on science and students honored

ELF4: A key transcription factor shaping immunity and cancer progression

Updated chronic kidney disease management guidelines recommend SGLT2 inhibitors regardless of diabetes or kidney disease type

New research explores how AI can build trust in knowledge work

Compound found in common herbs inspires potential anti-inflammatory drug for Alzheimer’s disease

Inhaled COVID vaccine begins recruitment for phase-2 human trials

What’s in a label? It’s different for boys vs. girls, new study of parents finds

Genes combined with immune response to Epstein-Barr virus increase MS risk

Proximity and prejudice: Gay discrimination in the gig economy

New paper suggests cold temperatures trigger shapeshifting proteins

Reproductive justice–driven pregnancy interventions can improve mental health

Intranasal herpes infection may produce neurobehavioral symptoms, UIC study finds

Developing treatment strategies for an understudied bladder disease

Investigating how decision-making and behavioral control develop

Rutgers researchers revive decades-old pregnancy cohort with modern scientific potential

Rising CO2 likely to speed decrease in ‘space sustainability’ 

Study: Climate change will reduce the number of satellites that can safely orbit in space

Mysterious phenomenon at center of galaxy could reveal new kind of dark matter

Unlocking the secrets of phase transitions in quantum hardware

Deep reinforcement learning optimizes distributed manufacturing scheduling

AACR announces Fellows of the AACR Academy Class of 2025 and new AACR Academy President

TTUHSC’s Graduate School of Biomedical Sciences hosts 37th Student Research Week

New insights into plant growth

Female sex hormone protects against opioid misuse, rat study finds

[Press-News.org] Faulty internal recycling by brain's trash collectors may contribute to Alzheimer's