(Press-News.org) Contact: Michael Bernstein
m_bernstein@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6042
Michael Woods
m_woods@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6293
American Chemical Society
Purple sweet potatoes among 'new naturals' for food and beverage colors
INDIANAPOLIS, Sept. 8, 2013 — Mention purple sweet potatoes, black carrots or purple carrots, and people think of dining on heirloom or boutique veggies. But those plants and others have quietly become sources of a new generation of natural food colorings that are replacing traditional synthetic colors and colors derived from beetles.
That back-to-the-future trend is on the agenda here today at the 246th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society. The meeting, which features almost 7,000 reports on new discoveries in science and other topics, continues through Thursday in the Indiana Convention Center and downtown hotels.
Speakers described how natural colors used centuries ago are making a resurgence in response to consumer preferences, manufacturers' needs and the promise that these antioxidant-rich substances may have health benefits.
"The natural colors industry for foods and beverages is gaining in value as U.S. and international companies move towards sustainable and affordable crop alternatives to synthetic red colors and red colors derived from insects," explained Stephen T. Talcott, Ph.D., who spoke at the session. "In addition to adding eye appeal to foods and beverages, natural colorings add natural plant-based antioxidant compounds that may have a beneficial effect on health."
One major change, he said, is the appearance of root crops like black carrots and purple sweet potatoes (PSPs), which are grown specifically for the natural colors industry. They have become primary agricultural products, compared to fruits such as grapes, which are grown for other purposes and used as secondary or byproduct-based colors.
Talcott, who is with Texas A&M University, focused on the range of colors — from light pink to rose, red and deep purple — that can be obtained through use of the pigments in PSPs. Available commercially in the United States since 2006, but still hard to find in stores, PSPs have the same anthocyanin pigments found in black cherries. Baked, used for french fries or prepared in other ways, PSPs taste like regular sweet potatoes, Talcott noted.
PSP anthocyanins have proven to be among the best for food and beverage coloring, he said, citing fruit drinks, vitamin waters, ice cream and yogurt. They are stable, for instance, and do not break down easily; have superior coloring properties; and have a relatively neutral taste (in contrast to the slightly earthy, bitter taste from grape-based colorings). The pigments, however, are very difficult to extract.
Likewise, PSP anthocyanins have advantages over traditional synthetic red food colorings and the "carmine" reds extracted from cochineal insects. Those include sustainability and ease of production. Cochineal insects feed on a certain type of cactus native to South America and Mexico. It takes about 2,500 bugs to produce one ounce of cochineal extract, used in ice creams, yogurts, candy, beverages and other foods.
However, PSP anthocyanins are difficult to extract. Talcott reported on development of a new process that extracts larger amounts of pigment from PSPs. Byproducts of the process include starch and fiber, which could be used as animal feed, in various food applications or as a raw material for biofuel production. Alternatively, the byproducts could simply be composted and used as a soil conditioner for producing more PSPs or other crops.
Such processes could encourage development of a domestic natural food coloring industry, with agriculture spreads devoted specifically to growing foods for use in making food and beverage coloring. Currently, the United States imports much of the natural food coloring it uses commercially. The small amounts of PSPs grown domestically go mainly to sales of fresh potatoes for the table.
Talcott spoke at a symposium, "The Chemistry of Functional Beverages," which are beverages that go beyond the basics of quenching thirst or providing nutrition: They prevent disease or promote general good health. Abstracts for the symposium appear below.
###
A press conference on this topic will be held Sunday, Sept. 8, at 9:30 a.m. in the ACS Press Center, Room 211, in the Indiana Convention Center. Reporters can attend in person or access live video of the event and ask questions at http://www.ustream.tv/channel/acslive.
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.
Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.
Follow us: Twitter | Facebook
Abstracts
Purple sweet potato as a natural food color with bioactive properties
Steve T. Talcott, Ph.D., Nutrition and Food Science, Texas A&M University, College Station, TX 77843, United States, stalcott@tamu.edu
The natural pigment industry is a valuable and growing segment of the US food industry, with market trends towards stable and affordable alternatives to synthetic colors. Among the natural red colors, purple sweet potatoes (PSP) is becoming an industry standard for color stability with added benefits of a healthy halo that accompanies a vegetable juice concentrate. Limited PSP processing is conducted in the US due to crop limitations and challenges related to efficient pigment extraction and isolation. The starch content of the PSP along with an exceptionally high polyphenol oxidase activity not typically found in orange varieties create additional processing challenges. During pigment extraction, these native enzymes are activated and oxidize chlorogenic acids and result in co-oxidative reactions that destroy the targeted anthocyanins. Treatments were developed to evaluate pre-heating and anti-browning agents for their role on PSP extraction and subsequent stability and their combined role served to reduce oxidation and aid in overall pigment recovery. When used in beverage applications, PSP concentrates are expected to be free of residual sugars and earthy flavor defects and exhibit excellent color stability from their varied content of acylated anthocyanins that may also possess bioactive properties beneficial for human health. Changes in phytochemistry and stability during processing and its use in food formulations will be discussed along with applications of these novel ingredients in context to food quality and potential health benefits.
Functional properties of orange juice on lipid and glucose metabolism, appetite, and oxidative stress on humans
Thais B. Cesar, Ph.D., Department of Food and Nutrition, Faculty of Pharmaceutical Science, Sao Paulo State University - UNESP, Araraquara, Sao Paulo 14802-901, Brazil, tcesar@fcfar.unesp.br
We have conducted several studies to evaluate the effect of orange juice consumption on the risk factors for metabolic syndrome and cardiovascular diseases. In all these studies the participants have consumed orange juice regularly or an acute dose. Anthropometric, hemodynamic, biochemical, oxidative status and appetite parameters were assessed. The regular consumption of orange juice did not change the patient's body weight, percentage of fat mass, and waist circumference, suggesting that orange juice did not contribute to weight or fat mass gain. The consumption of orange juice improved the diet quality by adding important nutrients as folate, vitamin C, and calcium. The results also showed that orange juice significantly reduced serum total cholesterol, LDL-C, insulin resistance, C-reactive protein, blood pressure and increased serum antioxidant activity. We also verified in an transversal study that long term orange juice consumption, one year, was associated with low LDL-C and apolipoprotein B in normal and moderately hypercholesterolemic subjects. Appetite was also influenced by the acute intake of orange juice, and low levels of the insulin was showed after the consumption of orange juice, and leptin and adiponectin will be evaluated. In conclusion, our studies showed that orange juice consumption has promoted lipid-lowering, anti-inflammatory and antioxidant activities, which contribute to the prevention of the oxidative stress and the risk factors for diabetes and cardiovascular diseases.
Formation of polymeric pigments during chokeberry juice processing and storage
Luke R. Howard, Ph.D., Department of Food Science, University of Arkansas, Fayetteville, AR 72704, United States, lukeh@uark.edu
Chokeberries are a rich source of anthocyanins and procyanidins, but these compounds are unstable during juice processing and storage. Losses are accompanied by increased polymeric color values, indicating anthocyanins react with procyanidins to form polymeric pigments. In this study, polymeric pigments in samples at various stages of juice processing and pasteurized juices stored over six months at 25oC were measured by MALDI-TOF-MS in linear mode. Monomeric anthocyanins were analyzed by HPLC. Polymeric pigment signal intensities were strongest in the protonated molecular ion form [M+]. Cyanidin 3-galactoside with one (m/z 737) up to 12 (m/z 3903) flavan-3-ol units was present in all samples during processing and storage. The largest increase in polymeric pigments occurred following pasteurization, coinciding with a marked loss of monomeric anthocyanins. Polymeric pigments changed little over six months of storage despite a linear decline in monomeric anthocyanins. Thermal treatment appears to promote the formation of polymeric pigments in chokeberry juice.
Untapped capacity of phenolics
Jungmin Lee, Ph.D.,Horticultural Crops Research Unit worksite, USDA-ARS, Parma, ID 83660, United States, jlee@uidaho.edu
My research focuses on understanding the dynamics of plant primary and secondary metabolites. Though plant metabolites, including phenolics, only make up a small portion of the compounds found in a fruit or its final product, they are crucial for their contribution towards appearance (color), taste (bitterness and astringency), storability, and potential health benefits. Everyday consumers automatically and unknowingly make purchasing decisions based upon their judgment of phenolic attributes. Precise identification of phenolic compounds is key to discerning how cultivar selection, breeding strategies, environment, post-harvest conditions, and processing methods ultimately influence beverage quality. Highlights on the elucidation and quantification of phenolics in black raspberries, elderberries, wine grapes, cranberries, and the resulting products will be presented; data can improve production and processing. Presentation will also include how (1) characterizing cultivar variability in polyphenolics aids enhanced germplasm selection in berries; (2) vineyard management regimes alter metabolites in wine grapes; (3) winemaking conditions influence wine structure; (4) fruit processing methods effect efficiency of phenolic extraction in berry products.
Modification of phytochemicals for enhancing their functional properties
Inwook Choi, Ph.D., Division of Metabolism and Functionality Research, Korea Food Research Institute, Sungnam-Si, Kyunggi-Do 463-746, Republic of Korea, choiw@kfri.re.kr,
Alcoholic liver disease (ALD) is considered as a leading cause for a liver injury in modern dietary life. This study was aimed to investigate the effects of orally administrated citrus flavonoids (CFs) and their enzymatically modified ones (EM-CFs) to prevent ALD. This study also presented effectiveness of controlling hepatic metabolism of some flavonoids to improve their anti-inflammatory activities. Through such efforts, bioavailability and functionalities of flavonoids were proven to be improved.
Formulation and dosing strategies to improve bioavailability of flavan-3-ols
Mario G. Ferruzzi, Ph.D., Department of Food Science, Purdue University, West Lafayette, IN 47907, United States, mferruzz@purdue.edu
Flavan-3-ols are a sub-class of plant-derived flavonoids commonly found in beverage products such as tea, cocoa, grapes and apples. Consumption of flavan-3-ol rich beverages has been associated with several health benefits including a reduced risk of several chronic and degenerative diseases. Several flavan-3-ol forms have demonstrated biological activities consistent with health promoting effects including the ability to modulate oxidative and inflammatory stress. While promising, physiological delivery (bioavailability) of flavan-3-ols or their bioactive metabolites from these beverages remains a critical step to positively affecting tissue specific disease risk and outcomes. Bioavailability of flavan-3-ols is dependent on numerous factors including: digestive release, intestinal transport, metabolism and distribution/elimination. This talk will focus on the impact of the food matrix (physical form, flavan-3-ol form and dose, macro/micronutrient profile) on the bioavailability and metabolism of flavan-3-ols. Formulation factors impacting stability in the GI tract and intestinal transport will be described. Additionally, the impact of repeated exposure to dietary polyphenols on absorption and metabolism of individual bioactive flavan-3-ol derivatives will be described in the context of ongoing studies defining brain-bioavailable polyphenol metabolites. Defining key factors that impact tissue specific profiles of flavan-3-ol metabolites is critical to the design of functional beverages consistent with delivery of desired health benefits.
Tannin-protein interactions -- in the lab, in beverages, and in the gastrointestinal tract
Ann E. Hagerman, Ph.D., Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, United States, hagermae@miamioh.edu
Interactions between polyphenols and proteins have been studied for many decades, with a primary focus on the noncovalent, reversible complexes that form rapidly in aqueous solution. These interactions have long attracted the interest of food and beverage scientists, since they are factors in important properties including haze formation and astringency. Recent appreciation of the beneficial health effects of polyphenols has driven additional research into interactions with proteins that may control bioactivity or bioavailability. This review will focus on the fundamental basis for polyphenol-protein interactions, with emphasis on methods used to explore the interactions, and the molecular forces that drive the interaction. Non-covalent interactions with proteins ranging from salivary proteins to therapeutic target proteins, as well as food and gastrointestinal proteins, will be described. The role of polyphenols as antioxidants will be integrated into the study of polyphenol-protein interactions by exploring the covalent bonds that form when a polyphenol is oxidized in the presence of proteins. Unanswered questions and directions for future research will be highlighted.
Antioxidant activity and chemical composition of coffees roasted under various conditions
Masumi Kamiyama, Ph.D., Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, United States, mkamiyama@ucdavis.edu
One of the most important bioactive components in food and beverage is antioxidants, which are known to prevent various diseases caused by oxidative damage. In this study, the inhibitory effect of samples from nine commercial brewed coffees toward malonaldehyde formation from an oxidized lipid ranged from 63% to 97%. Among possible antioxidant principles, chlorogenic acids contained the highest level, followed by quinic acid, and caffeic acid. When chlorogenic acid, quinic acid, and caffeic acid were heated under various coffee roasting conditions, phenol and its derivatives were identified in the largest quantities in the heated samples. These phenols -- in particular, catechol (76%) and 4-ethylcatechol (75%) -- exhibited potent antioxidant activities. Degradation of chlorogenic acid, quinic acid and caffeic acid upon heat treatment produced additional antioxidants in roasted coffees. The results suggest that continuous ingestion of antioxidants by habitual coffee drinkers has the beneficial effect of offering protection from in vivo oxidative damage.
Determination of carcinogenic 4(5)-methylimidazole and its precursors, α-dicarbonyl compounds in Maillard model systems and commercial soft drinks
Hae Won Jang, Ph.D., Environmental Toxicology, University of California, Davis, Davis, CA 95616-5374, United States, haejang@ucdavis.edu
Caramel colors prepared for soft drinks have been known to produce bioactive compounds, such as α-dicarbonyl compounds and heterocyclic compounds via the Maillard reaction. In the present study, formation mechanisms of toxic glyoxal, methylglyoxal, diacetyl, and 4(5)-methylimidazole were investigated using Maillard reaction systems. When aqueous sucrose solutions with different pHs were heated, methylglyoxal was formed in the greatest amounts (245 µg/mL), followed by glyoxal (32.90 µg/mL), and diacetyl (14.83 µg/mL). When Maillard reaction systems consisting of D-glucose and ammonia were heated with or without sodium sulfite, diacetyl (1,588.45 µg/mL) formed in the greatest amounts, followed by 4(5)-methylimidazole (1,269.71 µg/mL) methylglyoxal (160.05 µg/mL), and glyoxal (46.12 µg/mL). Ammonia acted as a catalyst for diacetyl formation. Addition of sulfite reduced the formation of 4(5)-methylimidazole by 46%, glyoxal by 93%, methylglyoxal by 90%, and diacetyl by 80%. The results of the present study provide important information to mitigate the formation of these toxic chemicals in beverages.
Purple sweet potatoes among 'new naturals' for food and beverage colors
2013-09-09
ELSE PRESS RELEASES FROM THIS DATE:
First uses of new solar energy technology: Killing germs on medical, dental instruments
2013-09-09
Contact: Michael Bernstein
m_bernstein@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6042
Michael Woods
m_woods@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6293
American Chemical Society
First uses of new solar energy technology: Killing germs on medical, dental instruments
INDIANAPOLIS, Sept. 8, 2013 — A revolutionary new solar energy technology that turns water into steam without boiling the entire container of water has become the basis for new devices to sanitize medical and dental instruments and human ...
Synthetic mRNA can induce self-repair and regeneration of the infarcted heart
2013-09-09
A team of scientists at Karolinska Institutet and Harvard University has taken a major step towards treatment for heart attack, by instructing the injured heart in mice to heal by expressing a factor that triggers cardiovascular regeneration driven by native heart stem cells. The study, published in Nature Biotechnology, also shows that there was an effect on driving the formation of a small number of new cardiac muscle cells.
"This is the beginning of using the heart as a factory to produce growth factors for specific families of cardiovascular stem cells, and suggests ...
Fumes from military small arms lead to decline in lung function
2013-09-09
Barcelona, Spain: Exposure to fumes released during the firing of military small arms can lead to a decline in lung function, according to a new study.
The research, which will be presented at the European Respiratory Society (ERS) Annual Congress in Barcelona today (9 September 2013), suggests that members of the armed forces who are regularly firing small arms could be putting their lung health at risk.
Over the last 5 years, the armed forces in Norway have started to report ill health after live firing training. This new study aimed to characterise the health effects ...
Argan powder found in some cosmetics linked with occupational asthma
2013-09-09
Barcelona, Spain: Argan powder, which is used by the cosmetic industry in the production of foundation products, could be linked with occupational asthma.
A small study, presented at the European Respiratory Society (ERS) Annual Congress in Barcelona today (9 September 2013), has found the first evidence of a risk associated with the use of argan powder during the industrial production of cosmetics.
A sample of nine patients from a cosmetic factory in France were analysed in the study. All participants were exposed to the product in three different forms: crude ...
MERS-CoV treatment effective in monkeys, NIH study finds
2013-09-09
WHAT:
National Institutes of Health (NIH) scientists report that a combination of two licensed antiviral drugs reduces virus replication and improves clinical outcome in a recently developed monkey model of Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Their study, which appears as a letter in the Sept. 8 edition of Nature Medicine, expands on work published in April showing that a combination of ribavirin and interferon-alpha 2b stops MERS-CoV from replicating in cell culture. Both antivirals are routinely used together to treat viral diseases such ...
Climate change will upset vital ocean chemical cycles
2013-09-09
New research from the University of East Anglia shows that rising ocean temperatures will upset natural cycles of carbon dioxide, nitrogen and phosphorous.
Plankton plays an important role in the ocean's carbon cycle by removing half of all CO2 from the atmosphere during photosynthesis and storing it deep under the sea – isolated from the atmosphere for centuries.
Findings published today in the journal Nature Climate Change reveal that water temperature has a direct impact on maintaining the delicate plankton ecosystem of our oceans.
The new research means that ocean ...
Team IDs 2 pathways through which chromosomes are rearranged
2013-09-09
SAN ANTONIO (Sept. 8, 2013) — Biologists reported today in Nature that they have identified two pathways through which chromosomes are rearranged in mammalian cells. These types of changes are associated with some cancers and inherited disorders in people.
"Our finding provides a target to prevent these rearrangements, so we could conceivably prevent cancer in some high-risk people," said senior author Edward P. (Paul) Hasty, D.V.M., of the School of Medicine at The University of Texas Health Science Center at San Antonio. Partial funding came from the Cancer Therapy ...
Researchers uncover genetic cause of childhood leukemia
2013-09-09
NEW YORK, September 8, 2013 — For the first time, a genetic link specific to risk of childhood leukemia has been identified, according to a team of researchers from Memorial Sloan-Kettering Cancer Center, St. Jude Children's Research Hospital, University of Washington, and other institutions. The discovery was reported online today in the journal Nature Genetics.
"We're in unchartered territory," said study author Kenneth Offit, MD, MPH, Chief of the Clinical Genetics Service at Memorial Sloan-Kettering. "At the very least this discovery gives us a new window into inherited ...
Disparities in lung function found worldwide may impact health
2013-09-09
Hamilton, ON (September 8, 2013) – A global study led by McMaster University researchers has found large differences in lung function between healthy people from different socioeconomic and geographical regions of the world which could impact their health.
The highest lung function was found in individuals from North America and Europe. This was followed by South America, Middle East, China, sub-Saharan Africa, Malaysia and South Asia. South Asians had the lowest lung function, by 30% compared to North Americans and Europeans.
The large differences in lung function ...
Study uncovers value of mammogram screening for younger women
2013-09-09
A new analysis has found that most deaths from breast cancer occur in younger women who do not receive regular mammograms. Published early online in CANCER, a peer-reviewed journal of the American Cancer Society, the study indicates that regular screening before age 50 should be encouraged.
The use of mammograms to prevent breast cancer deaths has been controversial, especially after the United States Preventive Services Task Force proposed in 2009 to limit screening to women aged 50 to 74 years. Studies show varying benefits, and advances in treatment may have diminished ...