(Press-News.org) Augusta, Ga. – A little STING could go a long way in helping treat or even avoid autoimmune diseases such as arthritis, type 1 diabetes and multiple sclerosis, researchers report.
With some prompting, the protein STING can turn down the immune response or even block its attack on healthy body constituents like collagen, insulin and the protective covering of neurons, all targets in these debilitating diseases, said Dr. Andrew L. Mellor, immunologist at the Medical College of Georgia at Georgia Regents University.
MCG researchers saw STING's critical role play out after they injected into the bloodstream submicroscopic DNA nanoparticles, engineered carriers for delivering drugs or genes into cells. Last year, the researchers were the first to report that even empty-handed, these DNA nanoparticles could suppress immunity by evoking expression of the enzyme IDO in a mouse model of arthritis.
Now they learn that the magic is in STING, which recognizes the molecule that senses the DNA then prompts release of IDO, or indoleomine 2,3-dioxyegenase.
"The fact that STING is actually part of the DNA-sensing pathway tells us something we did not know before," said Mellor, corresponding author of the study in the rapid publication section of the Journal of Immunology.
In fact, mice without STING, had no response to the DNA nanoparticle, the researchers report.
DNA nanoparticles apparently look to the body a lot like the debris that results when dying cells release DNA from their nucleus. "You could draw the analogy that DNA nanoparticles are perhaps mimicking what happens when cells die in certain ways," Mellor said. Researchers already knew there was a link between STING and immunity: the food-borne bacterium listeria releases cyclic dinucleotides to activate STING in cells it has infected. However it's the first time they realized that in this case and others, STING actually turns the immune system off. "Obviously this is one way that the bacterium may avoid being eliminated," Mellor said. He believes STING can do the same for the collagen in knee cartilage and much more.
One question is the best way to activate STING. Mellor's recently awarded $1.4 million grant from the National Institutes of Health should help answer that and more. Researchers will be comparing results from STING's activation by DNA nanoparticles to its more direct stimulation by cyclic dinucleotides. "Think of it as a surrogate for DNA," Mellor said of cyclic dinucleotide, which has a lot of appeal because it's easy to synthesize and its direct effect may reduce the side effect potential. "We need to know which is the best approach in disease," Mellor said.
He's also pursuing his original premise by loading antigens for insulin and myelin – immune targets in type 1 diabetes and multiple sclerosis, respectively – onto the DNA nanoparticles to see if that enhances their therapeutic effect. He'll also further explore STING's response to DNA nanoparticles in these two disease models.
A new $100,000 Arthritis Foundation grant will enable Mellor to determine if the nanoparticles also suppress collagen-induced arthritis, a widely accepted animal model for translational studies of that malady.
Interestingly STING can actually suppress or trigger an immune response, depending on how it's evoked. When MCG researchers put the STING stimulus into the bloodstream, it results in suppression. Other scientists have generated the exact opposite effect by injecting STING stimulating reagents under the skin.
In the bloodstream, there are a lot of immune cells called phagocytes that ingest the submicroscopic particles that wind up in the fluid portion of the cell, called the cytoplasm, where most cellular activity happens. There, sensors detect the DNA and trigger signaling that leads to expression of IDO. In this complex interplay, STING appears essential to recognizing the molecule that recognizes the DNA.
The researchers have documented responses to their therapy in all three disease models. In the case if type 1 diabetes, for example, they have blocked the disease in a mouse genetically programmed to develop the condition.
"As long as we can treat early, they will never, ever get the disease," Mellor said. That's why his ultimate goal is vaccines. "The better we get at genetic profiling to identify individuals at risk, the more doors we open to preventing these diseases altogether, as vaccines have for so many infectious diseases. Their entire risk can be taken away to zero by early enough tweaking of the immune system."
Mellor is the Bradley-Turner and Georgia Research Alliance Eminent Scholar in Molecular Immunogenetics at MCG. He and Dr. David Munn reported in 1998 in the journal Science that the fetus expresses IDO to help avoid rejection by the mother's immune system. IDO works by degrading tryptophan, an amino acid essential to survival of T-cells, orchestrators of the immune response. Subsequent studies showed tumors use IDO for protection and the tumor-fighting potential of an IDO inhibitor is under study. On the flip side, there is evidence that increasing IDO expression can protect transplanted organs and counter autoimmune disease.
Dr. Lei Huang, an MCG research scientist, and Dr. Henrique Lemos, a Juvenile Diabetes Research Foundation-funded postdoctoral fellow, are co-authors on the published study.
INFORMATION:
STING may take the bite out of autoimmune diseases like arthritis, Type 1 diabetes
2013-09-10
ELSE PRESS RELEASES FROM THIS DATE:
Breaking deep-sea waves reveal mechanism for global ocean mixing
2013-09-10
Waves breaking over sandy beaches are captured in countless tourist photos. But enormous waves breaking deep in the ocean are seldom seen, although they play a crucial role in long-term climate cycles.
A University of Washington study for the first time recorded such a wave breaking in a key bottleneck for circulation in the world's largest ocean. The study was published online this month in the journal Geophysical Research Letters.
The deep ocean is thought of as dark, cold and still. While this is mostly true, huge waves form between layers of water of different density. ...
Cell transplants may be a novel treatment for schizophrenia
2013-09-10
SAN ANTONIO (Sept. 9, 2013) — Research from the School of Medicine at The University of Texas Health Science Center at San Antonio suggests the exciting possibility of using cell transplants to treat schizophrenia.
Cells called "interneurons" inhibit activity within brain regions, but this braking or governing function is impaired in schizophrenia. Consequently, a group of nerve cells called the dopamine system go into overdrive. Different branches of the dopamine system are involved in cognition, movement and emotions.
"Since these cells are not functioning properly, ...
A swarm on every desktop: Robotics experts learn from public
2013-09-10
HOUSTON -- (Sept. 9, 2013) -- The next experiment from Rice University's Multi-Robot Systems Laboratory (MRSL) could happen on your desktop. The lab's researchers are refining their control algorithms for robotic swarms based upon data from five free online games that anyone can play.
"What we learn from the game and our lab experiments applies directly to real-world challenges," said Aaron Becker, a postdoctoral researcher at MRSL. "For example, if a doctor had a swarm of several thousand microscopic robots, each carrying a tiny payload of anti-cancer drugs, might it ...
Upgrade to Mars rovers could aid discovery on more distant worlds
2013-09-10
WASHINGTON, DC—Smart as the Mars Curiosity mission has been about landing and finding its own way on a distant world, the rover is pretty brainless when it comes to doing the science that it was sent 567 million kilometers to carry out. That has to change if future rover missions are to make discoveries further out in the solar system, scientists say.
The change has now begun with the development of a new camera that can do more than just take pictures of alien rocks – it also thinks about what the pictures signify so the rover can decide on its own whether to keep exploring ...
Butterfly wings inspire new technologies: from fabrics and cosmetics to sensors
2013-09-10
A new study has revealed that the stunning iridescent wings of the tropical blue Morpho butterfly could expand the range of innovative technologies. Scientific lessons learnt from these butterflies have already inspired designs of new displays, fabrics and cosmetics.
Now research by the University of Exeter, in collaboration with General Electric (GE) Global Research Centre, University at Albany and Air Force Research Laboratory, and funded by the US Defense Advanced Research Projects Agency (DARPA), has discovered that the physical structure and surface chemistry of ...
Study finds men are more likely to develop physical illness than women
2013-09-10
TORONTO, Sept. 9, 2013 – Men were more likely to develop a physical illness than women during a 10-year period studied by researchers at St. Michael's Hospital.
Having a mental illness increases the risk of developing a physical illness by 10 times in both men and women, the study found.
However, women with mental illness tend to develop a physical illness a year earlier than men, according to the study by Dr. Flora Matheson, a scientist in hospital's Centre for Research on Inner City Health.
Women were at a 14 per cent reduced risk, compared to men, of developing ...
UCI researchers fabricate new camouflage coating from squid protein
2013-09-10
Irvine, Calif., Sept. 5, 2013 – What can the U.S. military learn from a common squid? A lot about how to hide from enemies, according to researchers at UC Irvine's Henry Samueli School of Engineering.
As detailed in a study published online in Advanced Materials, they have created a biomimetic infrared camouflage coating inspired by Loliginidae, also known as pencil squids or your everyday calamari.
Led by Alon Gorodetsky, an assistant professor of chemical engineering & materials science, the team produced reflectin – a structural protein essential in the squid's ability ...
Therapy slows onset and progression of Lou Gehrig's disease, study finds
2013-09-10
Studies of a therapy designed to treat amyotrophic lateral sclerosis (ALS) suggest that the treatment dramatically slows onset and progression of the deadly disease, one of the most common neuromuscular disorders in the world. The researchers, led by teams from The Research Institute at Nationwide Children's Hospital and the Ludwig Institute at the University of California, San Diego, found a survival increase of up to 39 percent in animal models with a one-time treatment, a crucial step toward moving the therapy into human clinical trials.
The therapy reduces expression ...
Brain circuitry loss may be a very early sign of cognitive decline in healthy elderly people
2013-09-10
(SACRAMENTO, Calif.) — The degeneration of a small, wishbone-shaped structure deep inside the brain may provide the earliest clues to future cognitive decline, long before healthy older people exhibit clinical symptoms of memory loss or dementia, a study by researchers with the UC Davis Alzheimer's Disease Center has found.
The longitudinal study found that the only discernible brain differences between normal people who later developed cognitive impairment and those who did not were changes in their fornix, an organ that carries messages to and from the hippocampus, ...
Early-onset Parkinson's disease linked to genetic deletion
2013-09-10
Sept. 9, 2013 – Toronto, Canada –
Scientists at the Centre for Addiction and Mental Health (CAMH) and University Health Network (UHN) have found a new link between early-onset Parkinson's disease and a piece of DNA missing from chromosome 22. The findings help shed new light on the molecular changes that lead to Parkinson's disease.
The study appears online today in JAMA Neurology.
Among people aged 35 to 64 who were missing DNA from a specific part of chromosome 22, the research team found a marked increase in the number of cases of Parkinson's disease, compared ...