(Press-News.org)
VIDEO:
New research based at Princeton University shows that the trick to predicting when and where sea animals will relocate due to climate change is to follow the pace and direction...
Click here for more information.
Scientists expect climate change and warmer oceans to push the fish that people rely on for food and income into new territory. Predictions of where and when species will relocate, however, are based on broad expectations about how animals will move and have often not played out in nature. New research based at Princeton University shows that the trick to more precise forecasts is to follow local temperature changes.
The researchers report in the journal Science the first evidence that sea creatures consistently keep pace with "climate velocity," or the speed and direction in which changes such as ocean temperature move. They compiled 43 years of data related to the movement of 128 million animals from 360 species living around North America, including commercial staples such as lobster, shrimp and cod. They found that 70 percent of shifts in animals' depth and 74 percent of changes in latitude correlated with regional-scale fluctuations in ocean temperature.
"If we follow the temperature, which is easier to predict, that provides a method to predict where the species will be, too," said first author Malin Pinsky, a former Princeton postdoctoral researcher in ecology and evolutionary biology who is now an assistant professor of ecology and evolution at Rutgers University.
"Climate changes at different rates and in different directions in different places," he said. "Animals are basically being exposed to different changes in temperature."
The researchers compiled survey data collected from 1968 to 2011 by American and Canadian fishery-research centers and government panels. The surveys recorded surface and bottom temperatures, as well as the complete mass of animals in nine areas central to North American fisheries: the Aleutian Islands; the eastern Bering Sea; the Gulf of Alaska; the West Coast from Washington to California; the Gulf Coast from Louisiana to Mexico; the Northeast coast from North Carolina to Maine; the coast of Nova Scotia; the southern Gulf of St. Lawrence; and the Atlantic Ocean east of Newfoundland.
Details of the surveys revealed that sea creatures adhere to a "complex mosaic of local climate velocities," the researchers reported. On average, changes in temperature for North America moved north a mere 4.5 miles per decade, but in parts of Newfoundland that pace was a speedier 38 miles north per decade. In areas off the U.S. West Coast, temperatures shifted south at 30 miles per decade, while in the Gulf of Mexico velocities varied from 19 miles south to 11 miles north per decade.
Animal movements were just as motley. As a whole, species shifted an average of 5 miles north per decade, but 45 percent of animal specific populations swam south. Cod off Newfoundland moved 37 miles north per decade, while lobster in the northeastern United States went the same direction at 43 miles per decade. On the other hand, pink shrimp, a staple of Gulf Coast fisheries, migrated south 41 miles per decade, the researchers found.
Pinsky worked with Princeton professors Jorge Sarmiento, the George J. Magee Professor of Geoscience and Geological Engineering and director of the Program in Atmospheric and Oceanic Sciences, and Simon Levin, the George M. Moffett Professor of Biology and professor of ecology and evolutionary biology; second author Boris Worm, a biology professor at Dalhousie University in Canada; and Michael Fogarty, a chief researcher with the National Oceanic and Atmospheric Administration's Northeast Fisheries Science Center in Woods Hole, Mass.
Daniel Pauly, a professor of fisheries at the University of British Columbia, said that the researchers reveal finer details of marine movements that are crucial for preservation and commercial fishing, yet often get lost in the global-scale models typically used to predict how fish will respond to altered environs. Pauly is familiar with the Princeton research but had no role in it.
Regional factors such as wind can actually counteract warmer water and result in cooler seas, as is the case off the coasts of California and Peru, Pauly said. In addition, fish are extremely sensitive to even slight temperature changes and will quickly seek ideal locales, which can appear like erratic shifts in distribution. Large-scale models based on global averages don't reflect these nuances.
Yet, Pauly said, the researchers also validate larger models by showing that their inconsistencies are due to small-scale variations, and not to a problem with the models as a whole. Writ large, marine species will seek cooler water and in many cases gradually move away from their traditional territory.
"It validates the whole concept of linking the physiology of fish with water temperature and its patterns," Pauly said. "At the end of the day, the overall temperature of the ocean changes. You can have local temperature resistance against the overall pattern, but not for long and not everywhere."
Climate velocity offers countries and regions a precise method for keeping tabs on fleeing fish stocks, Pauly said. Climate change is expected to spark international disputes over fishing territory. In recent years, the movement of mackerel into the far North Atlantic has resulted in diplomatic confrontations between Iceland, Norway and Denmark dubbed the "mackerel wars." Other countries are likely to fall into similar conflicts as fish relocate, such as pollock moving gradually east from American to Russian seas.
"It's therefore worth it for a country to develop regional models because the prediction of the behavior of the fish and their migration will be better. That's what [this research] says," Pauly said. "In the U.S., for instance, you can see the center of the distribution of pollock gradually moving, and so you can say when Russia is going to have 50 percent, or 80 percent, or 90 percent of the stock."
Efforts to predict fish migration, however, have lagged behind campaigns to prevent overfishing, Pinsky said. While overfishing is an immediate problem, regulators should not ignore climate change, particularly because fish populations affected by both changing climates and overfishing are especially vulnerable to collapse.
"We don't want to restrict fishing when not needed, or blame climate change for a species collapse when fishing is to blame," Pinsky said. "There have not been many attempts before to connect fine-scale biological data with fine-scale climate data. Our research implies that climate can be very useful for predicting marine distribution shifts. We expect these species to follow climate velocity in the future."
An idea first proposed in 2009, climate velocity explains why as many as 60 percent of land and sea species have deviated from the expectation that rising global temperatures would drive animals toward cooler high latitudes and elevations, or deeper waters, the researchers report. Instead, animals follow local temperatures, which over the next few decades may warm or cool even as global temperatures overall are rising, Pinsky said.
In the case of ocean temperatures, the march of balmy tides depends on currents, changes in the atmosphere, and geological features on the shore and in the ocean. The temperatures that species prefer tend to move toward the poles, but not as a single wave. In some cases, local changes in water temperature move away from the poles, or to deep water. As a result, the researchers found that 73 percent of animals that moved south and 75 percent that relocated to shallower waters were following temperature changes.
"We're just starting to understand how climate affects species, and it's been common to talk about broad patterns like species shifting toward the poles as climate warms," Pinsky said. "The problem has been that many species are not shifting toward the poles, and even of those species that are, some are shifting quickly and others slowly. Scientists were asking themselves, 'Why aren't certain species doing what we expect?' It turns out they are, we just had to alter our expectations."
INFORMATION:
The paper, "Marine Taxa Track Local Climate Velocities," was published Sept. 13 by Science. The work was funded by a David H. Smith Conservation Research Fellowship, the National Science Foundation, the Natural Sciences and Engineering Research Council of Canada, and the Nippon Foundation-University of British Columbia Nereus Program.
Movement of marine life follows speed and direction of climate change
2013-09-13
ELSE PRESS RELEASES FROM THIS DATE:
The UK is not investing enough in research into multi-drug resistant infections, say researchers
2013-09-13
Although emergence of antimicrobial resistance severely threatens our future ability to treat many infections, the UK infection-research spend targeting this important area is still unacceptably small, say a team of researchers led by Michael Head of UCL (University College London). Their study is published online today in the Journal of Antimicrobial Chemotherapy.
This study is the first systematic analysis of research funding for infectious disease research, and for antimicrobial resistance, in the UK between 1997 and 2010.
There were 6,165 studies identified that ...
Study finds 30 percent lower risk of dying for diabetics with bypass surgery vs. stent
2013-09-13
TORONTO, Sept. 13, 2013—People with diabetes have a 30 per cent less chance of dying if they undergo coronary artery bypass surgery rather than opening the artery through angioplasty and inserting a stent, a new study has found.
The findings are significant and have public health implications because of the sheer size of the difference in outcomes, according to the researchers at St. Michael's Hospital. Heart disease is the No. 1 killer of people with diabetes, and diabetics represent one-quarter of all patients who undergo coronary artery procedures. The number of people ...
Antarctic research details ice melt below massive glacier
2013-09-13
An expedition of international scientists to the far reaches of Antarctica's remote Pine Island Glacier has yielded exact measurements of an undersea process glaciologists have long called the "biggest source of uncertainty in global sea level projections."
The research, which appears in the latest issue of Science magazine, was conducted by scientists at New York University's Courant Institute of Mathematical Sciences, the Naval Postgraduate School (NPS) in Monterey, Calif., the University of Alaska, Pennsylvania State University, NASA, and the British Antarctic Survey. ...
UNC researchers identify a new pathway that triggers septic shock
2013-09-13
CHAPEL HILL, N.C. – The body's immune system is set up much like a home security system; it has sensors on the outside of cells that act like motion detectors — floodlights — that click on when there's an intruder rustling in the bushes, bacteria that seem suspect. For over a decade researchers have known about one group of external sensors called Toll-like receptors that detect when bacteria are nearby.
Now, researchers at the University of North Carolina School of Medicine have identified a sensor pathway inside cells. These internal sensors are like motion detectors ...
Living the good life, longer
2013-09-13
The average American today can look forward to over two more years of healthy life than they could just a generation ago, Harvard researchers have found.
By synthesizing the data collected in multiple government-sponsored health surveys conducted over the last 3 decades, Susan Stewart, researcher at the National Bureau of Economic Research, David Cutler, the Otto Eckstein Professor of Applied Economics and Professor in the Harvard Department of Global Health and Population, and Allison Rosen, MD and associate professor of Quantitative Health Sciences at the University ...
Americans living longer, more healthy lives
2013-09-13
WORCESTER, MA – Thanks to medical advances, better treatments and new drugs not available a generation ago, the average American born today can expect to live 3.8 years longer than a person born two decades ago. Despite all these new technologies, however, is our increased life expectancy actually adding active and healthy years to our lives? That question has remained largely unanswered – until now. In a first-of-its-kind study, researchers at the University of Massachusetts Medical School (UMMS) have found that the average 25-year-old American today can look forward to ...
Stem cells are wired for cooperation, down to the DNA
2013-09-13
We often think of human cells as tiny computers that perform assigned tasks, where disease is a result of a malfunction. But in the current issue of Science, researchers at The Mount Sinai Medical Center offer a radical view of health — seeing it more as a cooperative state among cells, while they see disease as result of cells at war that fight with each other for domination.
Their unique approach is backed by experimental evidence. The researchers show a network of genes in cells, which includes the powerful tumor suppressor p53, which enforce a cooperative state ...
Simple steps may identify patients that hold onto excess sodium
2013-09-13
Augusta, Ga. - Getting a second urine sample and blood pressure measure as patients head out of the doctor's office appears an efficient way to identify those whose health may be in jeopardy because their bodies hold onto too much sodium, researchers report.
"We want to prove that you can easily and efficiently identify these patients," said Evan A. Mulloy, a second-year medical student at the Medical College of Georgia at Georgia Regents University. "We want this to become a part of our routine standard of care."
Using the simple method, researchers looked at 19, ...
Scientific societies face 'modern challenges'
2013-09-13
RESTON, VIRGINIA – An article published in the September issue of BioScience highlights the challenges facing biological societies and offers insights for scientific societies to respond and adapt to the changing dynamics of 21st century science.
The American Institute of Biological Sciences (AIBS) surveyed 139 biology societies to better understand the composition of the biological sciences community and how this community has changed over time. Organizational leaders were asked about the size of their organization's membership over the last fifty years. The majority ...
Voyager's departure from the heliosphere
2013-09-13
This news release is available in Spanish. New data from NASA's Voyager 1 spacecraft, which has been hurtling away from the Sun since it was launched in 1977, indicates that the spacecraft has indeed left the comfort of the heliosphere—the bubble of hot, energetic charged particles surrounding the Solar System—and entered into a region of cold, dark space, known as interstellar space. Based on these new measurements, which show that plasma densities around the spacecraft are consistent with theoretical predictions of the interstellar medium, researchers suggest that ...