(Press-News.org) Researchers at the Virginia Tech Carilion Research Institute have reported the first experimental evidence that supports the theory that a soccer ball-shaped nanoparticle commonly called a buckyball is the result of a breakdown of larger structures rather than being built atom-by-atom from the ground up.
Technically known as fullerenes, these spherical carbon molecules have shown great promise for uses in medicine, solar energy, and optoelectronics. But finding applications for these peculiar structures has been difficult because no one knows exactly how they are formed.
Two theories compete regarding the molecular mechanisms that make fullerenes. The first and oldest is the "bottom-up" theory, which says these carbon cages are built atom-by-atom, like the construction of a Lego model. The second, more recent, theory takes a "top-down" approach, suggesting that fullerenes form when much larger structures break into constituent parts.
After several years of debate with little more than computational models in support of how the top-down theory might work, researchers led by Harry Dorn, a professor at the research institute, have discovered the missing link: asymmetrical fullerenes that are formed from larger structures appear to settle into stable fullerenes.
The discovery appeared online Sept. 15 in the journal Nature Chemistry.
"Understanding the molecular mechanics of how fullerenes and their many variations are formed is not just a curiosity," said Dorn, who has been researching metallofullerenes – fullerenes with a few atoms of metal held within – for more than two decades. "It would give us insights into new, better ways to prepare them. Fullerenes and metallofullerenes are already involved in hundreds of biomedical studies. The ability to create large numbers of a wide variety of metallofullerenes would be a giant building block that would take the field to new heights."
The medicinal promise of metallofullerenes stems from the atoms of metal caged within them. Because the metal atoms are trapped in a cage of carbon, they do not react with the outside world, making their side-effect risks low in both number and intensity.
For example, one particular metallofullerene with gadolinium at its core has been shown to be up to 40 times better as a contrast agent in magnetic resonance imaging scans for diagnostic imaging than options now commercially available. Current experiments are also directed at using metallofullerenes to carry therapeutic radioactive ions to target cancer tissue.
"A better understanding of the formation of fullerenes and metallofullerenes may allow the development of new contrast agents for magnetic resonance imaging at commercial-level quantities," said Jianyuan Zhang, a graduate student in Dorn's laboratory and the first author of the paper. "These larger quantities will facilitate a next generation of contrast agents with multiple targets."
Dorn's new study hinges on the isolation and purification of approximately 100 micrograms — roughly the size of several specks of pepper — of a particular metallofullerene consisting of 84 carbon atoms with two additional carbon atoms and two yttrium atoms trapped inside.
When Dorn and his colleagues determined the metallofullerene's exact structure using nuclear magnetic resonance imaging and single crystal X-ray analysis, they made a startling discovery —the asymmetrical molecule could theoretically collapse to form nearly every known fullerene and metallofullerene.
All the process would require would be a few minor perturbations — the breaking of only a few molecular bonds — and the cage would become highly symmetrical and stable.
This insight, Dorn said, supports the theory that fullerenes are formed from graphene — a single sheet of carbon just one atom thick — when key molecular bonds begin to break down. And although the study focuses on fullerenes with yttrium trapped inside, it also shows that the carbon distribution looks similar for empty cages, suggesting regular fullerenes form the same way.
"Not only are the findings presented in Dr. Dorn's paper extremely interesting, but the study represents a real milestone in the field," said Takeshi Akasaka, a professor of chemistry at the University of Tsukuba in Japan and an authority in the field of metallofullerene research, who was not involved in the study. "The study presents physical evidence for a process of metallofullerene creation that most scientists in the field initially scoffed at."
Dorn said scientists have questioned the bottom-up theory of fullerene formation ever since it was discovered that fullerenes were formed from asteroids colliding with Earth and fullerenes were found in interstellar space.
"With this study, we hope to be that much closer to understanding their formation and creating entirely new classes of fullerenes and metallofullerenes that could be useful in medicine as well as in other fields that haven't even occurred to us yet," Dorn said.
"Dr. Dorn's insight into the fundamental process whereby fullerenes are formed is a major contribution to the field," said Michael Friedlander, executive director of the Virginia Tech Carilion Research Institute. "Understanding the molecular steps in their formation is key to realizing fully the potential of this versatile and potentially potent family of chemicals in medicine. Dr. Dorn's contributions to understanding these molecules are paving the way for the formulation of targeted novel diagnostics, therapeutics, and the combination of both—theranostics. This approach will provide an important component for tomorrow's arsenal of precision medicine."
Dorn and Zhang's research collaborators include Faye Bowles, a graduate student researcher; Marilyn Olmstead, a professor of chemistry; and Alan Balch, a distinguished professor of chemistry; all from the University of California, Davis.
INFORMATION:
Also participating were Daniel Bearden, a research scientist with the Hollings Marine Laboratory at the National Institute of Standards and Technology, and Tim Fuhrer, now an assistant professor of chemistry at Radford University.
Researchers from Virginia Tech who worked on the study include Richard Helm, an associate professor of biochemistry; W. Keith Ray, a senior research associate in biochemistry; Youqing Ye, a graduate student in chemistry; Caitlyn Dixon, an undergraduate student in chemistry; and Kim Harich, an analytical chemist senior in biochemistry.
Researchers discover evidence to support controversial theory of 'buckyball' formation
Discovery could have a bearing on medical imaging, cancer treatment
2013-09-16
ELSE PRESS RELEASES FROM THIS DATE:
Tropical forests 'fix' themselves
2013-09-16
Tropical forests speed their own recovery, capturing nitrogen and carbon faster after being logged or cleared for agriculture. Researchers working at the Smithsonian Tropical Research Institute in Panama think the discovery that trees "turn up" their ability to capture or "fix" nitrogen from the air and release it into the soil as the forest makes a comeback has far-reaching implications for forest restoration projects to mitigate global warming.
"This is the first solid case showing how nitrogen fixation by tropical trees directly affects the rate of carbon recovery after ...
Quantum entanglement only dependent upon area
2013-09-16
Two researchers at UCL Computer Science and the University of Gdansk present a new method for determining the amount of entanglement – a quantum phenomenon connecting two remote partners, and crucial for quantum technology - within part of a one-dimensional quantum system.
In their paper, published this week in Nature Physics, Dr Fernando Brandão (UCL Computer Science) and Dr Michał Horodecki (Institute for Theoretical Physics and Astrophysics, University of Gdansk) demonstrate when the correlation between particles in a sample reduces exponentially with distance, ...
Tropical forest carbon absorption may hinge on an odd couple
2013-09-16
A unique housing arrangement between a specific group of tree species and a carbo-loading bacteria may determine how well tropical forests can absorb carbon dioxide from the atmosphere, according to a Princeton University-based study. The findings suggest that the role of tropical forests in offsetting the atmospheric buildup of carbon from fossil fuels depends on tree diversity, particularly in forests recovering from exploitation.
Tropical forests thrive on natural nitrogen fertilizer pumped into the soil by trees in the legume family, a diverse group that includes ...
Approved cancer drug potentially could help treat diabetes, Stanford researchers find
2013-09-16
STANFORD, Calif. — A pair of studies by researchers at the Stanford University School of Medicine has identified a molecular pathway — a series of interaction among proteins — involved in the development of diabetes. Furthermore, they have found that a drug already approved for use in humans can regulate the pathway.
The findings will be published online Sept. 15 in two articles in Nature Medicine.
The studies, done in mice, identify a previously unexpected link between a low-oxygen condition called hypoxia and the ability of cells in the liver to respond to insulin. ...
Subduction channel processes: New progress in plate tectonic theory
2013-09-16
The plate tectonic theory has been primarily developed in three stages. (1) From continental drift and seafloor spreading to oceanic subduction, laying a physical foundation of the plate tectonic theory. This was achieved by the recognitions that continents would be assembled to build a supercontinent Pangea with subsequent breakup to yield the present configuration, lithospheric plates buoyantly move on the asthenospheric mantle, and oceanic crust is subducted along trenches into the mantle. (2) From oceanic subduction to continental subduction and collision orogeny, with ...
Study shows projected climate change in West Africa not likely to worsen malaria situation
2013-09-16
CAMBRIDGE, MA -- As public-health officials continue to fight malaria in sub-Saharan Africa, researchers are trying to predict how climate change will impact the disease, which infected an estimated 219 million people in 2010 and is the fifth leading cause of death worldwide among children under age 5.
But projections of future malaria infection have been hampered by wide variation in rainfall predictions for the region and lack of a malaria-transmission model that adequately describes the effects of local rainfall on mosquitoes, which breed and mature in ephemeral pools ...
Diminishing fear vicariously by watching others
2013-09-16
Phobias — whether it's fear of spiders, clowns, or small spaces — are common and can be difficult to treat. New research suggests that watching someone else safely interact with the supposedly harmful object can help to extinguish these conditioned fear responses, and prevent them from resurfacing later on.
The research, published in Psychological Science, a journal of the Association for Psychological Science, indicates that this type of vicarious social learning may be more effective than direct personal experience in extinguishing fear responses.
"Information about ...
Sharp rise in opioid drugs prescribed for non-cancer pain, reports study in Medical Care
2013-09-16
Philadelphia, Pa. (September 13, 2013) – Prescribing of strong opioid medications for non-cancer pain in the United States has nearly doubled over the past decade, reports a study in the October issue of Medical Care, published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.
At the same time, prescribing of non-opioid pain relievers has been stable or declined, according to the new research by Dr G. Caleb Alexander of Johns Hopkins Bloomberg School of Public Health, Baltimore, and colleagues. Dr Alexander comments, "There is an epidemic of prescription ...
Several common differentially expressed genes between Kashin-Beck disease and Keshan disease
2013-09-15
Kashin-Beck disease (KBD) and Keshan disease (KD) are major endemic diseases in China. Postgraduate Xi Wang et al., under the guidance of Professor Xiong Guo from the Institute of Endemic Diseases of the Faculty of Public Health, Medicine College of Xi'an Jiaotong University, Key Laboratory of Environment and Gene Related Diseases in Ministry of Education, Key Laboratory of Trace Elements and Endemic Diseases of Health Ministry, set out to tackle these two endemic diseases. After several years of innovative research, they have made significant progress in determining the ...
Hypertension researcher encourages colleagues to expand their focus
2013-09-14
Augusta, Ga. – Dr. David Pollock has a simple message for fellow hypertension researchers: think endothelin.
In a country where better than 30 percent of adults have high blood pressure and 50-75 percent of those have salt-sensitive hypertension, he believes the powerful endothelin system, which helps the body eliminate salt, should not be essentially ignored.
However, the research and clinical world focus on suppressing a better-known system, which prompts the body to hold onto salt, said Pollock, Chief of the Section of Experimental Medicine at the Medical College ...
LAST 30 PRESS RELEASES:
Study links rising suicidality among teen girls to increase in identifying as LGBQ
Mind’s eye: Pineal gland photoreceptor’s 2 genes help fish detect color
Nipah virus: epidemiology, pathogenesis, treatment, and prevention
FDA ban on Red Dye 3 and more are highlighted in Sylvester Cancer's January tip sheet
Mapping gene regulation
Exposure to air pollution before pregnancy linked to higher child body mass index, study finds
Neural partially linear additive model
Dung data: manure can help to improve global maps of herbivore distribution
Concerns over maternity provision for pregnant women in UK prisons
UK needs a national strategy to tackle harms of alcohol, argue experts
Aerobic exercise: a powerful ally in the fight against Alzheimer’s
Cambridge leads first phase of governmental project to understand impact of smartphones and social media on young people
AASM Foundation partners with Howard University Medical Alumni Association to provide scholarships
Protective actions need regulatory support to fully defend homeowners and coastal communities, study finds
On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
America’s political house can become less divided
A common antihistamine shows promise in treating liver complications of a rare disease complication
Trastuzumab emtansine improves long-term survival in HER2 breast cancer
Is eating more red meat bad for your brain?
How does Tourette syndrome differ by sex?
Red meat consumption increases risk of dementia and cognitive decline
Study reveals how sex and racial disparities in weight loss surgery have changed over 20 years
Ultrasound-directed microbubbles could boost immune response against tumours, new Concordia research suggests
In small preliminary study, fearful pet dogs exhibited significantly different microbiomes and metabolic molecules to non-fearful dogs, suggesting the gut-brain axis might be involved in fear behavior
Examination of Large Language Model "red-teaming" defines it as a non-malicious team-effort activity to seek LLMs' limits and identifies 35 different techniques used to test them
Most microplastics in French bottled and tap water are smaller than 20 µm - fine enough to pass into blood and organs, but below the EU-recommended detection limit
A tangled web: Fossil fuel energy, plastics, and agrichemicals discourse on X/Twitter
This fast and agile robotic insect could someday aid in mechanical pollination
Researchers identify novel immune cells that may worsen asthma
Conquest of Asia and Europe by snow leopards during the last Ice Ages uncovered
[Press-News.org] Researchers discover evidence to support controversial theory of 'buckyball' formationDiscovery could have a bearing on medical imaging, cancer treatment