(Press-News.org) A multi-institutional team of engineers has developed a new approach to the fabrication of nanostructures for the semiconductor and magnetic storage industries. This approach combines top-down advanced ink-jet printing technology with a bottom-up approach that involves self-assembling block copolymers, a type of material that can spontaneously form ultrafine structures.
The team, consisting of nine researchers from the University of Illinois at Urbana-Champaign, the University of Chicago and Hanyang University in Korea, was able to increase the resolution of their intricate structure fabrication from approximately 200 nanometers to approximately 15 nanometers. A nanometer is a billionth of a meter, the width of a double-stranded DNA molecule.
The ability to fabricate nanostructures out of polymers, DNA, proteins and other "soft" materials has the potential to enable new classes of electronics, diagnostic devices and chemical sensors. The challenge is that many of these materials are fundamentally incompatible with the sorts of lithographic techniques that are traditionally used in the integrated circuit industry.
Recently developed ultrahigh resolution ink jet printing techniques have some potential, with demonstrated resolution down to 100-200 nanometers, but there are significant challenges in achieving true nanoscale dimension. "Our work demonstrates that processes of polymer self-assembly can provide a way around this limitation," said John Rogers, the Swanlund Chair Professor in Materials Science and Engineering at Illinois.
Rogers and his associates report their findings in the September issue of Nature Nanotechnology. Combining jet printing with self-assembling block copolymers enabled the engineers to attain the much higher resolution, as suggested by lead author Serdar Onses, a postdoctoral scientist at Illinois. Onses earned his doctorate at the University of Wisconsin under Paul Nealey, now the Brady W. Dougan Professor in Molecular Engineering at UChicago and a co-author of the Nature Nanotechnology paper. "This concept turned out to be really useful," Rogers said.
Engineers use self-assembling materials to augment traditional photolithographic processes that generate patterns for many technological applications. They first create either a topographical or chemical pattern using traditional processes. For the Nature Nanotechnology paper, this was done at imec in Belgium, an independent nanoelectronics research center. Nealey's laboratory pioneered this
process of directed self-assembly of block copolymers using chemical nanopatterns.
Nearing the limits
The resolution of the chemical pattern nears the current limit of traditional photolithography, noted Lance Williamson, a graduate student in molecular engineering at UChicago and co-author of the Nature Nanotechnology article. "Imec has the capability to perform the photolithography at this scale over large areas with high precision," Williamson said.
Back at the University of Illinois, engineers place a block copolymer atop this pattern. The block copolymer self-organizes, directed by the underlying template to form patterns that are at much higher resolution than the template itself.
Previous work has focused on the deposition and assembly of uniform films on each wafer or substrate, resulting in patterns with essentially only one characteristic feature size and spacing between features. But practical applications may need block copolymers of multiple dimensions patterned or spatially placed over a wafer.
"This invention, to use inkjet printing to deposit different block copolymer films with high spatial resolution over the substrate, is highly enabling in terms of device design and manufacturing in that you can realize different dimension structures all in one layer," Nealey said. "Moreover, the different dimension patterns may actually be directed to assemble with either the same or different templates in different regions."
Benefits of e-jet printing
The advanced form of ink-jet printing the engineers use to locally deposit block copolymers is called electrohydrodynamic, or e-jet printing. It operates much like the ink-jet printers office workers use for printing on paper. "The idea is flow of materials from small openings, except e-jet is a special, high-resolution version of ink-jet printers that can print features down to several hundred nanometers," Onses said. And because e-jet can naturally handle fluid inks, it is exceptionally well-suited for patterning solution suspensions of nanotubes, nanocrystals, nanowires and other types of nanomaterials.
"The most interesting aspect of this work is the ability to combine 'top down' techniques of jet printing with 'bottom up' processes of self-assembly, in a way that opens up new capabilities in lithography—applicable to soft and hard materials alike," Rogers said.
"The opportunities are in forming patterned structures of nanomaterials to enable their integration into real devices. I am optimistic about the possibilities."
INFORMATION:
Citation: "Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly," by M. Serdar Onses, Chiho Song, Lance Williamson, Erick Sutanto, Placid M. Ferreira, Andrew G. Alleyne, Paul F. Nealey, Heejoon Ahn, and John A. Rogers, Nature Nanotechnology, September 2013, pg. 667-675. Published first as
an Advance Online Publication, Aug. 25, 2013.
Funding: National Science Foundation and National Research Foundation of Korea.
Invention jet prints nanostructures with self-assembling material
2013-09-17
ELSE PRESS RELEASES FROM THIS DATE:
Quitting Facebook -- what's behind the new trend to leave social networks?
2013-09-17
New Rochelle, NY, September 16, 2013—If you are ready to commit "virtual identity suicide," delete your Facebook account, and say good-bye to social networking sites, you are not alone. A social networking counter movement is emerging, and Facebook quitters, who remove their accounts, differ from Facebook users in several key ways, as described in an article in Cyberpsychology, Behavior, and Social Networking, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Cyberpsychology, Behavior, and Social Networking website.
Stefan ...
UC Davis study applies timely cost-effectiveness analysis to state breast cancer screening program
2013-09-17
(SACRAMENTO, Calif.) — When public health budgets are constrained, mammography screening should begin later and occur less frequently, a cost-effectiveness analysis for California's Every Woman Counts (EWC) program concludes.
As outlined in a paper published in Value in Health, the analysis focused on several policy questions, including the effect on EWC program costs and outcomes of starting screening at age 50 years instead of 40 and of screening every two years instead of every year. The study was conducted in response to recent government funding cutbacks.
"This ...
Depletion of 'traitor' immune cells slows cancer growth in mice
2013-09-17
When a person has cancer, some of the cells in his or her body have changed and are growing uncontrollably. Most cancer drugs try to treat the disease by killing those fast-growing cells, but another approach called immunotherapy tries to stimulate a person's own immune system to attack the cancer itself.
Now, scientists at the University of Washington have developed a strategy to slow tumor growth and prolong survival in mice with cancer by targeting and destroying a type of cell that dampens the body's immune response to cancer. The researchers published their findings ...
Yale researchers see decline in hospitalizations for serious heart infection
2013-09-17
Hospitalizations for endocarditis, a deadly heart infection that disproportionately affects older heart patients, have declined in recent years despite recommendations for limited use of antibiotics to prevent the illness. These findings were recently published by Yale School of Medicine researchers in the Journal of the American College of Cardiology.
Endocarditis is the most serious infection of the cardiovascular system, and the risk increases with surgical procedures. Past studies showed a marked increase in endocarditis hospitalization rates during the 1990s. As ...
'Vicious cycle' shields, spreads cancer cells
2013-09-17
HOUSTON – (Sept. 16, 2013) – A "vicious cycle" produces mucus that protects uterine and pancreatic cancer cells and promotes their proliferation, according to researchers at Rice University. The researchers offer hope for a therapeutic solution.
They found that protein receptors on the surface of cancer cells go into overdrive to stimulate the production of MUC1, a glycoprotein that forms mucin, aka mucus. It covers the exposed tips of the elongated epithelial cells that coat internal organs like lungs, stomachs and intestines to protect them from infection.
But when ...
Rare gene variant linked to macular degeneration
2013-09-17
AUDIO:
Researchers from around the world, led by scientists at the Genome Institute at Washington University School of Medicine and the University of Michigan School of Public Gealth, have identified a...
Click here for more information.
An international team of researchers, led by scientists at The Genome Institute at Washington University School of Medicine in St. Louis and the University of Michigan School of Public Health in Ann Arbor, has identified a gene mutation ...
Immune system marker tied to improved bone marrow transplant outcomes
2013-09-17
The risk of death following bone marrow transplantation can be reduced about 60 percent using a new technique to identify bone marrow donors who make the most potent cancer-fighting immune cells, according to research from St. Jude Children's Research Hospital. The findings appear in the September 16 online issue of the Journal of Clinical Oncology.
The research builds on an earlier St. Jude discovery that specialized immune cells called natural killer (NK) cells dispatched cancer cells more efficiently when the NK cells carried a particular version of a KIR protein on ...
Arginine therapy shows promise for sickle cell pain
2013-09-17
Arginine therapy may be a safe and inexpensive treatment for acute pain episodes in patients with sickle cell disease, according to results of a recent clinical study. The study was the first randomized placebo-controlled study to demonstrate benefits of arginine therapy in children with sickle cell disease hospitalized for severe pain.
Sickle cell disease is an inherited condition in which the body makes red blood cells containing abnormal hemoglobin, the protein that carries oxygen from the lungs to other cells in the body. This abnormal hemoglobin (hemoglobin S) causes ...
Rensselaer researchers create accurate computer model of RNA tetraloop
2013-09-17
Troy, N.Y. – A computational model developed by researchers at Rensselaer Polytechnic Institute is the first to accurately simulate the complex twists of a short sequence of RNA as it folds into a critical hairpin structure known as a "tetraloop." The research, published today in Proceedings of the National Academy of Sciences, is a glimpse into RNA, found in all life on Earth, and could advance a variety of research areas, including the search for new antibiotics and cures for protein-related diseases.
Existing computational models, based on DNA rather than RNA, do not ...
On the road to fault-tolerant quantum computing
2013-09-17
Reliable quantum computing would make it possible to solve certain types of extremely complex technological problems millions of times faster than today's most powerful supercomputers. Other types of problems that quantum computing could tackle would not even be feasible with today's fastest machines. The key word is "reliable." If the enormous potential of quantum computing is to be fully realized, scientists must learn to create "fault-tolerant" quantum computers. A small but important step toward this goal has been achieved by an international collaboration of researchers ...