(Press-News.org) Biologists at the University of California, San Diego have developed a revolutionary new method for identifying and characterizing antibiotics, an advance that could lead to the discovery of new antibiotics to treat antibiotic resistant bacteria.
The researchers, who published their findings in this week's early online edition of the journal Proceedings of the National Academy of Sciences, made their discovery by developing a way to perform the equivalent of an autopsy on bacterial cells.
"This will provide a powerful new tool for identifying compounds that kill bacteria and determining how they work," said Joseph Pogliano, a professor of biology at UC San Diego who headed the research team. "Some bacteria have evolved resistance to every known class of antibiotic and, when these multi-drug resistant bacteria cause an infection, they are nearly impossible to treat. There is an urgent need for new antibiotics capable of treating infections caused by antibiotic resistant bacteria."
The Centers for Disease Control and Prevention issued an alarming report in March that antibiotic-resistant strains of Carbapenem-Resistant Enterobacteriaceae, or CRE, had been found to cause infections in patients in nearly 200 hospitals in the United States alone. Because no antibiotics on the market are effective at treating these infections, about one-half of patients die from CRE infections. These outbreaks are difficult to contain, and in a 2011 outbreak of Klebsiella pneumonia at the U.S. National Institutes of Health Clinical Center, the bacteria spread despite strict infection control procedures and was detected in drains and medical devices that had been subject to standard decontamination protocols.
"We are finally running out of the miracle drugs," said Pogliano, who detailed the history: The antibiotic penicillin was first discovered in the late 1920s, and received widespread clinical use in the 1940s. However, bacteria quickly evolved resistance to penicillin, so new and better versions were developed. Since that time, a continuous race has been fought to identify new antibiotics in order to stay one step ahead of the evolving resistance. In the 2011 outbreak of Klebsiella, the bacteria evolved resistance even to colistin, a drug of last resort because of its severe side effects.
Over the last 25 years, the number of new antibiotics entering the clinic has drastically declined. At the same time, bacteria have continued to evolve resistance to all of the currently available drugs, creating the current critical situation. One of the main problems in identifying new antibiotics and bringing them to market is a lack of understanding how the molecules work.
"It's easy to identify thousands of molecules capable of killing bacteria," explained Kit Pogliano, a professor of biology and a co-author of the paper. "The hard part is picking out the winners from the losers, and choosing molecules that are the best candidates for drug development. One key piece of information needed for this choice is knowledge of how the drug works, but this is traditionally difficult information to obtain, usually requiring months of intensive work. We've applied 21st century methods that within just two hours provide this information, allowing more rapid prioritization of new molecules. This will open up the discovery pipeline, allowing us to more rapidly identify new molecules with potential to enter the clinic for treatment of multi-drug-resistant pathogens."
One key to this new approach was the combination of microscopy and quantitative biology tools. "We had to develop all of the cell biology and quantitative biology methods for generating the data ourselves and that required a lot of work, but now that we have the method working, it is very exciting," said Poochit Nonejuie, a graduate student in the Division of Biological Sciences and another co-author. "My chemistry colleagues can give me a new molecule in the morning, and by the afternoon I can tell them the likely cellular pathways that they target. It's mind blowing how powerful the technology is."
The UC San Diego biologists say their new method is not only game changing, but promises to revolutionize how drug discovery teams guide their studies. With previous methods, understanding how an antibiotic works requires many different biochemical assays to be performed, which requires a lot of time and relatively large quantities of the compound, which is almost always in short supply when it is first discovered.
"Our new method represents the first time that a single test can be performed and identify the likely mechanism of action for a new compound," said Joseph Pogliano. He noted that postdoctoral fellow Anne Lamsa has miniaturized the method so that it requires just a few nanograms of each drug candidate, conserving molecules that are often available only in tiny quantities. "It's also faster and can be easily adapted for high-throughput drug discovery efforts," he added. "This method will allow us to more quickly identify chemicals that kill bacteria, which will accelerate the development of new medicines. Understanding how antibiotics work is key to understanding how they evolve resistance."
Pogliano said his research team, which also included Mike Burkart, a chemistry and biochemistry professor, will be continuing its investigations on antibiotics. "We are now using this method to look for new molecules active against antibiotic resistant bacteria," he said.
### END
Biologists develop new method for discovering antibiotics
2013-09-17
ELSE PRESS RELEASES FROM THIS DATE:
SF State researchers steer light in new directions
2013-09-17
SAN FRANCISCO, Sept. 16, 2013 -- A team of researchers led by San Francisco State University's Weining Man is the first to build and demonstrate the ability of two-dimensional disordered photonic band gap material, designed to be a platform to control light in unprecedented ways.
The new material could allow researchers to manipulate the flow and radiation of light in new ways by breaking away from the highly angular and constrained pathways for light dictated inside orderly photonic crystals. Instead, the material could lead to arbitrarily shaped, wavy, curved, and sharply ...
Whole DNA sequencing reveals mutations, new gene for blinding disease
2013-09-17
BOSTON -- Retinitis pigmentosa (RP) is a genetic disease that causes progressive loss of vision and is caused by mutations in more than 50 genes. Conventional methods for identification of both RP mutations and novel RP genes involve the screening of DNA coding sequences.
In a paper in the Proceedings of the National Academy of Sciences, researchers from the Massachusetts Eye and Ear, Harvard Medical School, the University of Lausanne, Switzerland, and others tested DNA with the use of whole genome sequencing, a technique that takes into account all variants from both ...
Vaccinating cattle against E. coli O157 could cut human cases of infection by 85 percent, say scientists
2013-09-17
Vaccinating cattle against the E. coli O157 bacterium could cut the number of human cases of the disease by 85%, according to scientists.
The bacteria, which cause severe gastrointestinal illness and even death in humans, are spread by consuming contaminated food and water, or by contact with livestock faeces in the environment. Cattle are the main reservoir for the bacterium.
The vaccines that are available for
cattle are rarely used, buc could be significant.
The research was lead by a team of researchers at the University of Glasgow in collaboration with the ...
Copper bracelets and magnetic wrist straps fail to help rheumatoid arthritis, says York research
2013-09-17
Copper bracelets and magnet wrist straps have no real effect on pain, swelling, or disease progression in rheumatoid arthritis, according to new findings from a study conducted at the University of York.
In the first randomised controlled trial to study the effects of copper bracelets and magnetic wrist straps on rheumatoid arthritis, 70 patients with active symptoms each wore four different devices over a five-month period, reporting on their pain, disability, and medication use throughout the study. Participants also provided blood samples, after wearing each device ...
Young breast cancer patients often overestimate benefit of having healthy breast removed
2013-09-17
BOSTON -- Young women with breast cancer often overestimate the odds that cancer will occur in their other, healthy breast, and decide to have the healthy breast surgically removed, a survey conducted by Dana-Farber Cancer Institute investigators indicates. The survey also shows that many patients opt for the procedure -- known as a contralateral prophylactic mastectomy, or CPM -- despite knowing it will be unlikely to improve their chance of survival.
The study, published in the Sept. 17 issue of the Annals of Internal Medicine, shows a certain disconnect between ...
Sanford-Burnham researchers identify new target for melanoma treatment
2013-09-17
LA JOLLA, Calif., September 16, 2013 – Scientists at Sanford-Burnham Medical Research Institute (Sanford-Burnham) today announced the discovery that a gene encoding an enzyme, phosphoinositide-dependent kinase-1 (PDK1), plays an essential role in the development and progression of melanoma. The finding offers a new approach to treating this life-threatening disease.
The team of researchers, led by Ze'ev Ronai, Ph.D., professor and scientific director of Sanford-Burnham Medical Research Institute in La Jolla (San Diego, Calif.), used genetic mouse melanoma models to show ...
Researchers identify novel biomarker for diabetes risk
2013-09-17
Researchers at the Vanderbilt Heart and Vascular Institute and Massachusetts General Hospital have identified a biomarker that can predict diabetes risk up to 10 years before onset of the disease.
Thomas J. Wang, M.D., director of the Division of Cardiology at Vanderbilt, along with colleagues at Massachusetts General Hospital, report their findings in the October issue of The Journal of Clinical Investigation.
The researchers conducted a study of 188 individuals who developed type 2 diabetes mellitus and 188 individuals without diabetes who were followed for 12 years ...
NASA to investigate Tropical Storm Humberto: Atlantic's second 'zombie tropical storm'
2013-09-17
Humberto is the second "zombie" tropical storm of the Atlantic Ocean season. That is, it's the second tropical storm that degenerated into a remnant low pressure area only to make a comeback as a tropical storm. NASA's HS3 hurricane mission sent an unmanned Global Hawk Aircraft out to the eastern Atlantic to investigate Humberto on Sept. 16.
On Sunday, Sept. 15, Humberto weakened to a remnant low pressure area when it hit an area of strong wind shear. The wind shear eased and Humberto regained tropical storm strength on Sept. 16, making it the second "zombie" storm in ...
Wide-faced men make others act selfishly
2013-09-17
RIVERSIDE, Calif. — Two assistant professors of management at the University of California, Riverside and several other researchers have previously shown that men with wider faces are more aggressive, less trustworthy and more prone to engaging in deception.
Now, in a just-published paper, they have shown, in a series of four studies, that individuals behave more selfishly when interacting with men with wider faces and this selfish behavior elicits selfish behavior in others.
"This clearly shows that this behavior is also socially driven, not just biologically driven," ...
It's a shock: Life on Earth may have come from out of this world
2013-09-17
A group of international scientists including a Lawrence Livermore National Laboratory researcher have confirmed that life really could have come from out of this world.
The team shock compressed an icy mixture, similar to what is found in comets, which then created a number of amino acids – the building blocks of life. The research appears in advanced online publication Sept. 15 on the Nature Geosciences journal website.
This is the first experimental confirmation of what LLNL scientist Nir Goldman first predicted in 2010 and again in 2013 using computer simulations ...