(Press-News.org) Drexel University researchers are continuing to expand the capabilities and functionalities of a family of two-dimensional materials they discovered that are as thin as a single atom, but have the potential to store massive amounts of energy. Their latest achievement has pushed the materials storage capacities to new levels while also allowing for their use in flexible devices.
About three years ago, Dr. Michel W. Barsoum and Dr. Yury Gogotsi, professors in Drexel's College of Engineering, discovered atomically thin, two-dimensional materials -similar to graphene- that have good electrical conductivity and a surface that is hydrophilic, or can hold liquids. They named these new materials "MXenes," which hearkens to their genesis through the process of etching and exfoliating atomically thin layers of aluminum from layered carbide "MAX phases." The latter also discovered at Drexel about 15 years ago by Barsoum
Since then, the pair, and their team of materials scientists, have forged ahead in exploring the potential uses of MXenes. Their latest findings are reported in the Sept. 27 issue of Science. In their piece entitled "Cation Intercalation and High Volumetric Capacitance of Two-dimensional Titanium Carbide," Gogotsi and Barsoum along with Drexel researchers Maria Lukatskaya, Olha Mashtalir, Chang Ren, Yohan Dall'Angese and Michael Naugib and Patrick Rozier, Pierre Louis Taberna and Dr. Patrice Simon from Université Paul Sabatier in France, explain how MXenes can accommodate various ions and molecules between their layers by a process known as intercalation.
Intercalation is sometimes a necessary step in order to exploit the unique properties of two-dimensional materials. For example, placing lithium ions between the MXene sheets makes them good candidates for use as anodes in lithium-ion batteries. The fact that MXenes can accommodate ions and molecules in this way is significant because it expands their ability to store energy.
"Currently, eight MXenes have been reported by our team, but there are likely many more that will be discovered - the MXene-and-ion combinations that have been tested to date are by no means an exhaustive demonstration of the material's energy storage capabilities," said Gogotsi, who is also director of the A.J. Drexel Nanotechnology Institute. "So even the impressive capacitances that we are seeing here are probably not the highest possible values to be achieved using MXenes. Intercalation of magnesium and aluminum ions that we observed may also pave the way to development of new kinds of metal ion batteries."
Barsoum and Gogotsi's report looks at intercalation of MXenes with a variety of ions, including lithium, sodium, magnesium, potassium, ammonium and aluminum ions. The resulting materials show high energy storage capacities and present another avenue of research in this branch of materials science.
"Two-dimensional, titanium carbide MXene electrodes show excellent volumetric super capacitance of up to 350 F/cm3 due to intercalation of cations between its layers," Barsoum said. "This capacity is significantly higher than what is currently possible with porous carbon electrodes. In other words, we can now store more energy in smaller volumes, an important consideration as mobile devices get smaller and require more energy"
The researchers also reported on using MXene "paper" electrodes, instead of conventional rolled powder electrodes with a polymer binder. The flexibility of this paper suggests MXenes may also be useful in flexible and wearable energy storage devices, which is another major area of ongoing research at Drexel in collaboration with Professor Genevieve Dion's Shima Seiki Haute Technology Laboratory.
INFORMATION:
Drexel researchers find new energy storage capabilities between layers of 2-D materials
2013-09-27
ELSE PRESS RELEASES FROM THIS DATE:
A hidden genetic code for better designer genes
2013-09-27
Scientists routinely seek to reprogram bacteria to produce proteins for drugs, biofuels and more, but they have struggled to get those bugs to follow orders. But a hidden feature of the genetic code, it turns out, could get bugs with the program. The feature controls how much of the desired protein bacteria produce, a team from the Wyss Institute for Biologically Inspired Engineering at Harvard University reported in the September 26 online issue of Science.
The findings could be a boon for biotechnologists, and they could help synthetic biologists reprogram bacteria ...
Lunar orbiters discover source of space weather near Earth
2013-09-27
Solar storms — powerful eruptions of solar material and magnetic fields into interplanetary space — can cause what is known as "space weather" near Earth, resulting in hazards that range from interference with communications systems and GPS errors to extensive power blackouts and the complete failure of critical satellites.
New research published today increases our understanding of Earth's space environment and how space weather develops.
Some of the energy emitted by the sun during solar storms is temporarily stored in Earth's stretched and compressed magnetic ...
Research reveals bottom feeding techniques of tagged humpback whales in Stellwagen Bank Sanctuary
2013-09-27
New NOAA-led research on tagged humpback whales in Stellwagen Bank National Marine Sanctuary reveals a variety of previously unknown feeding techniques along the seafloor. Rather than a single bottom feeding behavior, the whales show three distinct feeding approaches: simple side-rolls, side-roll inversions, and repetitive scooping.
A recently published paper, in the journal Marine Mammal Science, indicates that bottom side-roll techniques are common in Stellwagen Bank National Marine Sanctuary and the Great South Channel study area, a deep-water passage between Nantucket, ...
Observations reveal critical interplay of interstellar dust, hydrogen
2013-09-27
MADISON – For astrophysicists, the interplay of hydrogen — the most common molecule in the universe — and the vast clouds of dust that fill the voids of interstellar space has been an intractable puzzle of stellar evolution.
The dust, astronomers believe, is a key phase in the life cycle of stars, which are formed in dusty nurseries throughout the cosmos. But how the dust interacts with hydrogen and is oriented by the magnetic fields in deep space has proved a six-decade-long theoretical challenge.
Now, an international team of astronomers reports key observations that ...
New gut bacterium discovered in termite's digestion of wood
2013-09-27
When termites munch on wood, the small bits are delivered to feed a community of unique microbes living in their guts, and in a complex process involving multiple steps, these microbes turn the hard, fibrous material into a nutritious meal for the termite host. One key step uses hydrogen to convert carbon dioxide into organic carbon—a process called acetogenesis—but little is known about which gut bacteria play specific roles in the process. Utilizing a variety of experimental techniques, researchers from the California Institute of Technology (Caltech) have now discovered ...
Changing laws, attitudes of police response to drug overdose may lead to better outcomes
2013-09-27
PROVIDENCE, R.I. – A recent study from Rhode Island Hospital has found that a change in the way police respond to drug-related overdose emergencies could contribute to improved outcomes of the victims and to the communities where overdoses occur. The study found that while law enforcement officers often serve as medical first responders, there is a lack of clarity as to what police can do, or should do, at the scene of an overdose. The study is published online in advance of print in the journal Drug and Alcohol Dependence.
The study included interviews to better understand ...
Scripps Florida scientists develop a more effective molecular modeling process
2013-09-27
JUPITER, FL, September 26, 2013 – It's difficult and time-consuming to produce accurate computer models of molecules, primarily because traditional modeling methods are limited in their ability to handle alternative molecular shapes and, consequently, are subject to multiple errors.
Moreover, the traditional approach uses mathematical formulas or algorithms that are run sequentially, refining the structural details of the model with each separate algorithm—a method that has been revolutionized by personal computing, but still requires labor-intensive human intervention ...
Martian chemical complicates hunt for life's clues
2013-09-27
WASHINGTON, DC—The quest for evidence of life on Mars could be more difficult than scientists previously thought.
A scientific paper published today details the investigation of a chemical in the Martian soil that interferes with the techniques used by the Curiosity rover to test for traces of life. The chemical causes the evidence to burn away during the tests.
In search of clues to life's presence on Mars – now or in the past – Curiosity checks Martian soil and rocks for molecules known as organic carbon compounds that are the hallmark of living organisms on Earth.
While ...
New data show agricultural anabolic steroids regenerate in aquatic ecosystems
2013-09-27
RENO, Nev. – New regulatory approaches may be needed to assess environmental risks of agricultural growth promoters, and similar human pharmaceuticals, following research that shows a newly found reversion mechanism allows unexpected persistence of the steroidal substances in aquatic environments.
Results of the research will be published in an article in the renowned journal Science – the weekly journal of AAAS, the science society – next month and are available immediately online in Science Express.
"We investigated trenbolone, an anabolic steroid, and found that ...
Spirals of light may lead to better electronics
2013-09-27
A group of researchers at the California Institute of Technology (Caltech) has created the optical equivalent of a tuning fork—a device that can help steady the electrical currents needed to power high-end electronics and stabilize the signals of high-quality lasers. The work marks the first time that such a device has been miniaturized to fit on a chip and may pave the way to improvements in high-speed communications, navigation, and remote sensing.
"When you're tuning a piano, a tuning fork gives a standardized pitch, or reference sound frequency; in optical resonators ...