(Press-News.org) This news release is available in German.
Leipzig. Teams of international scientists have decrypted the effectiveness of two types of bacteria, which could be used in the future to help combat oil spill disasters. According to a report written by scientists from the Helmholtz Centre for Environmental Research and the Helmholtz Centre for Infection Research in the peer-reviewed journal Applied and Environmental Microbiology, Alcanivorax borkumensis converts hydrocarbons into fatty acids which then form along the cell membrane. New insights on the bacteria Oleispira antarctica are important to understand their adaptation to low temperatures and could help in mitigation strategies for oil spills in polar seas or the deep sea, according to comments made by an international team in the peer-reviewed journal Nature Communications
Until now, chemicals have often been used to clean up oil disasters, to break up the oil/water emulsion, making oil more soluble and thus removing it from the surface water. According to data from the US Environmental Protection Agency (EPA) around seven million litres of such chemicals were used to combat oil pollution in the Gulf of Mexico, resulting from a spill of about 700,000 tons of crude oil into the sea from the offshore oil drilling platform "Deepwater Horizon" in 2010. Some of the most well-known of these were dispersants with the brand name Corexit — developed following the notorious tanker accident of the Exxon Valdez in Alaska in 1989. These substances have been heavily criticised however because of their side effects on humans and the environment. In the context of the EU-project BACSIN, scientists from different countries have therefore been investigating alternatives. "One approach for example could be to stimulate oil-degrading bacteria in their growth or for example by making them easier to use by freeze-drying so that they can be sprayed more easily than powders over the oil slick", explains Dr. Hermann J. Heipieper from the UFZ. "However, there are still lots of details that require fine-tuning before the day arrives when they can be used to combat damage from oil spills. The precautionary principle should therefore be given priority. No matter how concerted efforts are, nature will never completely return to its original state, not to mention the fact that the mitigation of environmental damage from oil spills is much more costly than its prevention."
Oil-degrading bacteria are not a human invention. In fact, they have been around for millions of years. The only thing that is new is the quantity of oil being spilt in the sea from oil disasters. Therefore, science has been looking into novel ways to accelerate natural degradation processes. One focus has been on hydrocarbon-degrading bacteria - so-called marine obligate hydrocarbonoclastic bacteria. These specialists at degrading hydrocarbons in marine ecosystems are able to degrade aliphatic hydrocarbons and use them as a source of energy. These bacteria are common in sea water all over the world, even if only in small quantities. If they come into contact with crude oil, then their population increases exponentially. A kind of bloom is formed, similar to those that we are familiar with from marine algae blooms. And yet, in spite of their important ecological meaning, still relatively little is known about the processes taking place in the cells of these bacteria. Headed by Dr. Hermann J. Heipieper, researchers from the UFZ have therefore been conducting detailed physiological and genomic analyses of the two reference strains of this group of bacteria (Alcanivorax borkumensis and Oleispira antarctica) that is tremendously versatile. This can be seen in particular by changes to the cell surface, by the way in which biologically oxidized aliphatic hydrocarbons are built into the cell membranes and by the regulation of genes to adapt to environmental stress.
Alcanivorax borkumensis is a marine bacterium, owing its name to the place where it was discovered – the island of Borkum (in spite of its worldwide distribution). It is considered to be one of the most important organisms with the ability to degrade oil spills in marine systems. Nevertheless, up until now there had been a lack of information on the growth and physiology of these bacteria in relation to hydrocarbons with different chain lengths. The recent investigations found that the bacterium were particularly effective at processing alkanes with carbon chain lengths of between 12 and 19 carbon atoms. "The cell growth confirmed that this bacterium is not only able to take up the intermediates of fatty acids in its own body but also to convert them", explains Heipieper.
By contrast, for the significantly colder polar seas or the deep sea Oleispira would be the more suitable bacterium. It can survive at temperatures around 5 degrees Celsius that are typical for example on the seabed of the Gulf of Mexico. With eleven protein crystal structures it has the largest quantity of structures under the cold-loving microorganisms and it clearly has more negative charges at the surface than microorganisms in moderate temperatures. Even if most of the enzymes of this bacterium no longer work optimally under cold weather conditions, they still work sufficiently to accelerate growth and outdo other competitors, if a hydrocarbon diet from crude oil suddenly becomes available. The persistence of these bacteria is proof of their ecological competitiveness in cold environments, therefore making them good candidates for the development of biotechnological solutions for oil pollution mitigation in polar regions. The new insights about the two bacteria are a small, but important step forward in the search for alternatives to the toxic dispersants that have been used so far.
INFORMATION:
Tilo Arnhold
Publications:
Naether D.J., Slawtschew S., Stasik S., Engel M., Olzog M., Wick L.Y., Timmis K.N., Heipieper H.J. (2013): Adaptation of hydrocarbonoclastic Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds - a physiological and transcriptomic approach. Appl. Environ. Microbiol. 79:4282-4293, in press. doi: 10.1128/AEM.00694-13
http://dx.doi.org/10.1128/AEM.00694-13
The study was funded by the European Commission in the context of the EU-project BACSIN.
Kube M., Chernikova T.N., Al-Ramahi Y., Beloqui A., Lopez-Cortez N., Guazzaroni M.E., Heipieper H.J., Klages S., Kotsyrbenko O.R., Langer I., Nechitaylo T.Y., Lünsdorf H., Fernández M., Juárez S., Ciordia S., Singer S., Kagan O., Egorova O., Petit P.A., Stogios P., Kim Y., Tchigvintsev A., Flick R., Denaro R., Genovese M., Albar J.P., Reva O.N., Martínez-Gomariz M., Tran H., Ferrer M., Savchenko A., Yakunin A.F., Yakimov M.M., Golyshina O.V., Reinhardt R., Golyshin P.N. (2013):
Functional genome analysis of Oleispira antarctica RB-8, a key oil-degrading bacterium in cold and deep marine environments. Nature Communications 4:2156, 23 July 2013. doi:10.1038/ncomms3156
http://dx.doi.org/10.1038/ncomms3156
The study was funded by the European Commission within the EU projects MAMBA, ULIXES, MAGIC PAH and MICROB3, by the government of Canada, the National Institutes of Health of the USA, the Max-Planck Institute as well as by the German Research Foundation (DFG).
Further information:
Dr. Hermann J. Heipieper
Helmholtz Centre for Environmental Research (UFZ)
Tel.: 0341-235-1694
http://www.ufz.de/index.php?de=4531
or
Tilo Arnhold, Susanne Hufe (UFZ-Press)
Tel.: 0341-235-1635, -1630
http://www.ufz.de/index.php?de=640
Useful links:
EU-Project: "Bacterial abiotic cellular stress and survival improvement" (BACSIN)
http://www.unil.ch/bacsin
„Wie Agent Orange im Golf von Mexiko" (ZEIT.de vom 18.06.2010):
http://www.zeit.de/wissen/gesundheit/2010-06/oelpest-chemie-gesundheit
"Ölteppich: Bakterien sollen Dreckbrühe verputzen" (Spiegel.de vom 31.07.2006):
http://www.spiegel.de/wissenschaft/natur/oelteppich-bakterien-sollen-dreckbruehe-verputzen-a-428979.html
At the Helmholtz Centre for Environmental Research (UFZ) scientists are interested in the wide-ranging causes and impacts of environmental change. They conduct research on water resources, biodiversity, the impacts of climate change and adaptation strategies, environmental and biotechnologies, bioenergy, the behaviour of chemicals in the environment and their effects on health, modelling and sociological issues. Their guiding motto: our research serves the sustainable use of natural resources and helps towards long-term food and livelihood security in the face of global change. The UFZ has over 1100 employees working in Leipzig, Halle und Magdeburg. It is funded by the federal government, as well as by the State of Saxony and Saxony Anhalt.
http://www.ufz.de/
The Helmholtz Association contributes to finding solutions for large and pressing issues in society, science and the economy through excellence in the following six areas of research: energy, earth and the environment, health, key technologies, structure of matter, transport and aerospace. With almost 35,000 employees and coworkers in 18 research centres and an annual budget of approx. 3.8 billion Euros the Helmholtz Association is the largest scientific organization in Germany. Work is conducted in the tradition of the renowned natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/
Can bacteria combat oil spill disasters?
Scientists examine the alternatives to toxic dispersants
2013-09-27
ELSE PRESS RELEASES FROM THIS DATE:
Cell nuclei harbor factories that transcribe genes
2013-09-27
Our genetic heritage is contained—and protected—in the nucleus of the cells that compose us. Copies of the DNA exit the nucleus to be read and translated into proteins in the cell cytoplasm. The transit between the nucleus and the cytoplasm takes place through the nuclear pores, genuine "customs agents" that monitor the import-export between these two compartments. Françoise Stutz, professor in the Faculty of Science at the University of Geneva (UNIGE), Switzerland, and her team have just discovered how nuclear pores also regulate the production speed of these DNA copies. ...
Breathing underwater: Evidence of microscopic life in oceanic crust
2013-09-27
EAST BOOTHBAY, ME – Although long thought to be devoid of life, the bottom of the deep ocean is now known to harbor entire ecosystems teeming with microbes. Scientists have recently documented that oxygen is disappearing from seawater circulating through deep oceanic crust, a significant first step in understanding the way life in the "deep biosphere" beneath the sea floor is able to survive and thrive. The new research findings were published in the journal Nature Communications on September 27, 2013, and are helping to redefine our concepts of the limits of life on our ...
New breast cancer imaging technique could cut down on false positives
2013-09-27
A joint BYU-Utah research team is developing a new breast cancer screening technique that has the potential to reduce false positives, and, possibly, minimize the need for invasive biopsies.
Led by BYU electrical engineer Neal Bangerter and University of Utah collaborators Rock Hadley and Joshua Kaggie, the group has created an MRI device that could improve both the process and accuracy of breast cancer screening by scanning for sodium levels in the breast.
"The images we're obtaining show a substantial improvement over anything that we've seen using this particular ...
Over the limit
2013-09-27
Contact: Laura Smarandescu
smarand@iastate.edu
515-294-8110
Iowa State University
Doug Walker
dmwalker@iastate.edu
515-294-6941
Iowa State University
Brian Wansink
716-860-0587
mmo59@cornell.edu
Cornell University
Over the limit
Size, shape and color of wine glass affect how much you pour
AMES, Iowa – Pouring a glass of wine is rarely an exact measurement, especially in a social setting. While most people think of a glass as one serving, in reality it could be closer to two or three. Just how much one pours is influenced by a variety of environmental ...
Research reveals the benefits of strength training as physical exercise for 90-year-olds
2013-09-27
After doing specific training for 12 weeks, people over the age of 90 improved their strength, power and muscle mass. This was reflected in an increase in their walking speed, a greater capacity to get out of their chairs, an improvement in their balance, a significant reduction in the incidence of falls and a significant improvement in muscle power and mass in the lower limbs. These are some of the outcomes of the study recently published in the journal Age of the American Ageing Association and which was led by Mikel Izquierdo-Redín, Professor of Physiotherapy at the ...
Greater desertification control using sand trap simulations
2013-09-27
In the fight against desertification, so-called straw checkerboard barriers (SCB) play a significant role. SCB consists of half -exposed criss-crossing rows of straws of wheat, rice, reeds, and other plants. The trouble is that our understanding of the laws governing wind-sand movement in SCB and their surrounding area is insufficient. Now, Ning Huang and colleagues from Lanzhou University in China have performed a numerical simulation of the sand movement inside the SCB, described in a paper just published in EPJ E. China is particularly affected by desertification, which ...
Study reveals differences in post-operative complications
2013-09-27
Older black and Hispanic patients have a greater risk than white patients of developing complications following surgery, a difference that can be explained by a patients' gender and pre-existing medical conditions. These findings, which are published today in the Journal of the American Geriatrics Society (JAGS), indicate that efforts to carefully evaluate risk factors prior to surgery need more attention, particularly for older minority patients.
Research has shown that minority groups tend to develop complications following surgery more often than whites. Investigators ...
Baculovirus-recognizing human cell receptor identified for the first time
2013-09-27
The receptor used by baculovirus to enter and interact with human cells has been identified. This syndecan-1 receptor was identified for the first time in a recent collaborative study carried out by the University of Eastern Finland and the University of Jyväskylä in Finland. The findings increase our understanding of the strategies by which the virus causes infection in cells and further facilitates the development of baculovirus for applications of gene transfer. According to the researchers, the identification of the syndecan-1 receptor helps in understanding the ways ...
CNIO scientists reduce progression of one of the most aggressive skin cancers in mice
2013-09-27
The c-Fos oncogene has traditionally been linked to cellular activities related to cancer, such as cell division, differentiation—conversion from one cell type to another—or survival. Any alteration of these activities can set off the development of tumours, which has made c-Fos an important target for the understanding and treatment of cancer.
A study led by Erwin Wagner, head of the F-BBVA-CNIO Cancer Cell Biology Programme and of the Genes, Development and Disease Group, has revealed a novel mechanism in which c-Fos is able to promote skin cancer: an increase in c-Fos ...
Genes against parasites
2013-09-27
Every year, millions of cattle die of trypanosomosis. The UN and the International Livestock Research Institute list trypanosomosis among the ten diseases of cattle with the greatest impact on the poor. In Africa the disease is known as "Nagana", which translates literally as "being in low or depressed spirits". The disease is caused by a parasite that enters the animals' blood as a result of the bite of the Tsetse fly.
Surprisingly, one West-African dwarf cattle breed, the Baoulé, seems less affected by trypanosomosis than others. When they are infected, Baoulé cattle ...
LAST 30 PRESS RELEASES:
Ancient beaches testify to long-ago ocean on Mars
Gulf of Mars: Rover finds evidence of ‘vacation-style’ beaches on Mars
MSU researchers use open-access data to study climate change effects in 24,000 US lakes
More than meets the eye: An adrenal gland tumor is more complex than previously thought
Origin and diversity of Hun Empire populations
New AI model measures how fast the brain ages
This new treatment can adjust to Parkinson's symptoms in real time
Bigger animals get more cancer, defying decades-old belief
As dengue spreads, researchers discover a clue to fighting the virus
Teaming up tiny robot swimmers to transform medicine
The Center for Open Science welcomes Daniel Correa and Amanda Kay Montoya to its Board of Directors
Research suggests common viral infection worsens deadly condition among premature babies
UC Irvine scientists invent new drug candidates to treat antibiotic-resistant bacteria
A history of isolation and alcohol use may impact depression treatment
A new strategy to promote healthy food choices
Report reveals high levels of added sugar in US infant formula despite medical recommendations
Arctic study urges stronger climate action to prevent catastrophic warming
New technique to measure circulating tumor DNA in metastatic cancer may improve disease progression surveillance and patient outcomes
One day of sleep deprivation can alter your immune system and increase inflammation
Study shows primary care and telehealth can deliver life-changing diabetes care
The brain’s map of space: A new discovery about how our brains represent information
AI to diagnose invisible brain abnormalities in children with epilepsy
COVID-19 vaccination and odds of post–COVID-19 condition symptoms in children ages 5 to 17
Sudden cardiac arrest among young competitive athletes before and during the COVID-19 pandemic
Mortality among US physicians and other health care workers
Telemedicine adoption and low-value care use and spending among fee-for-service Medicare beneficiaries
Researchers find telemedicine may help reduce use of unnecessary health tests
Research provides new detail on the impact of volcanic activity on early marine life
NCSA awarded funding to continue AI-focused NSF REU program
New USF study identifies urgent need to protect coastal marine ecosystems
[Press-News.org] Can bacteria combat oil spill disasters?Scientists examine the alternatives to toxic dispersants