(Press-News.org) A mix of serendipity and dogged laboratory work allowed a diverse team of University of Pittsburgh scientists to report in the Oct. 1 issue of Nature Cell Biology that they had solved the mystery of a basic biological function essential to cellular health.
By discovering a mechanism by which mitochondria – tiny structures inside cells often described as "power plants" – signal that they are damaged and need to be eliminated, the Pitt team has opened the door to potential research into cures for disorders such as Parkinson's disease that are believed to be caused by dysfunctional mitochondria in neurons.
"It's a survival process. Cells activate to get rid of bad mitochondria and consolidate good mitochondria. If this process succeeds, then the good ones can proliferate and the cells thrive," said Valerian Kagan, Ph.D., D.Sc., a senior author on the paper and professor and vice chair of the Pitt Graduate School of Public Health's Department of Environmental and Occupational Health. "It's a beautiful, efficient mechanism that we will seek to target and model in developing new drugs and treatments."
Dr. Kagan, who, as a recipient of a Fulbright Scholar grant, currently is serving as visiting research chair in science and the environment at McMaster University in Ontario, Canada, likened the process to cooking a Thanksgiving turkey.
"You put the turkey in the oven and the outside becomes golden, but you can't just look at it to know it's ready. So you put a thermometer in, and when it pops up, you know you can eat it," he said. "Mitochondria give out a similar 'eat me' signal to cells when they are done functioning properly."
Cardiolipins, named because they were first found in heart tissue, are a component on the inner membrane of mitochondria. When a mitochondrion is damaged, the cardiolipins move from its inner membrane to its outer membrane, where they encourage the cell to destroy the entire mitochondrion.
However, that is only part of the process, says Charleen T. Chu, M.D., Ph.D., professor and the A. Julio Martinez Chair in Neuropathology in the Pitt School of Medicine's Department of Pathology, another senior author of the study. "It's not just the turkey timer going off; it's a question of who's holding the hot mitt to bring it to the dining room?" That turns out to be a protein called LC3. One part of LC3 binds to cardiolipin, and LC3 causes a specialized structure to form around the mitochondrion to carry it to the digestive centers of the cell.
The research arose nearly a decade ago when Dr. Kagan had a conversation with Dr. Chu at a research conference. Dr. Chu, who studies autophagy, or "self-eating," in Parkinson's disease, was seeking a change on the mitochondrial surface that could signal to LC3 to bring in the damaged organelle for recycling. It turned out they were working on different sides of the same puzzle.
Together with Hülya Bayır, M.D., research director of pediatric critical care medicine, Children's Hospital of Pittsburgh of UPMC and professor, Pitt's Department of Critical Care Medicine, and a team of nearly two dozen scientists, the three senior authors worked out how the pieces of the mitochondria signaling problem fit together.
Now that they've worked out the basic mechanism, many more research directions will likely follow, said Dr. Chu.
"There are so many follow-up questions," she said. "What is the process that triggers the cardiolipin to move outside the mitochondria? How does this pathway fit in with other pathways that affect onset of diseases like Parkinson's? Interestingly, two familial Parkinson's disease genes also are linked to mitochondrial removal."
Dr. Bayir explained that while this process may happen in all cells with mitochondria, it is particularly important that it functions correctly in neuronal cells because these cells do not divide and regenerate as readily as cells in other parts of the body.
"I think these findings have huge implications for brain injury patients," she said. "The mitochondrial 'eat me' signaling process could be a therapeutic target in the sense that you need a certain level of clearance of damaged mitochondria. But, on the other hand, you don't want the clearing process to go on unchecked. You must have a level of balance, which is something we could seek to achieve with medications or therapy if the body is not able to find that balance itself."
INFORMATION:
Co-authors on this paper include Jing Ji, Ph.D., Ruben K. Dagda, Ph.D., Jian Fei Jiang, Ph.D., Yulia Y. Tyurina, Ph.D., Alexandr A. Kapralov, Ph.D., Vladimir A. Tyurin, Ph.D., Naveena Yanamala, Ph.D., Indira H. Shrivastava, Ph.D., Dariush Mohammadyani, Kent Zhi Qiang Wang, Ph.D., Jianhui Zhu, M.D., Ph.D., Judith Klein-Seetharaman, Ph.D., Krishnakumar Balasubramanian, Ph.D., Andrew A. Amoscato, Ph.D., Grigory Borisenko, Ph.D., Zhentai Huang, Ph.D., Aaron M. Gusdon, M.D., Amin Cheikhi, Erin K. Steer, Ruth Wang, Catherine Baty, D.V.M., Ph.D., Simon Watkins, Ph.D., and Ivet Bahar, Ph.D., all of the University of Pittsburgh.
END
VIDEO:
This is a video of radial diffusion of lithium into an uncoated germanium nanowire as well as axial lithiation of a silicon-coated nanowire's germanium core. This research on nanowires could...
Click here for more information.
New research led by an electrical engineer at the University of California, San Diego is aimed at improving lithium-ion batteries through possible new electrode architectures with precise nano-scale designs. The researchers created nanowires ...
The aerosolized dust created by vacuums contain bacteria and mold that "could lead to adverse effects in allergic people, infants, and people with compromised immunity," according to researchers at the University of Queensland and Laval University. Their findings are published ahead of print in Applied and Environmental Microbiology.
This finding is worrying as the study found resistance genes for five common antibiotics in the sampled bacteria along with the Clostridium botulinum toxin gene. This is of particular concern as, "The dust found indoors could act as a vehicle ...
MANHATTAN, Kan. -- Two Kansas geologists are helping shed new light on how tungsten metal is leached from the sediment surrounding aquifers into the groundwater. The findings may have implications for human health.
Tungsten is a naturally occurring metal that is primarily used for incandescent light bulb filaments, drill bits and an alternative to lead in bullets. Though it is thought to be nonhazardous to the environment and nontoxic to humans, it can be poisonous if ingested in large amounts. In recent years, tungsten has been tentatively linked to cases of childhood ...
Younger patients with colorectal cancer that has spread to other parts of the body represent a high-risk group that is less likely to respond to treatment. Colorectal cancer in patients younger than 40 is more likely to grow despite treatment and young patients are at greater risk of death than people in other age groups.
That's according to research presented to the 2013 European Cancer Congress in Amsterdam. The team of scientists is led by an investigator at University of Colorado Cancer Center.
An analysis of 20,034 patients in 24 phase III clinical trials showed ...
DURHAM, N.C. – By detailing a process required for repairing DNA breakage, scientists at the Duke Cancer Institute have gained a better understanding of how cells deal with the barrage of damage that can contribute to cancer and other diseases.
The insights, reported online the week of Sept. 30, 2013, in the journal Proceedings of the National Academy of Sciences, build on earlier work by the research team and identify new prospects for developing cancer therapies.
The researchers have focused on a complex series of events that cells routinely undertake to repair DNA ...
Blending cremated remains into tattoos, creating "virtual tombstones" online and displaying "Rest in Peace" car decals or T-shirts are unconventional ways people increasingly are using to honor the dead this century, a Baylor University researcher says.
"With 'do-it-yourself' memorials, people are creating their own ways of memorializing the dead, particularly in a more secularized society," said Candi Cann, Ph.D., an assistant professor of religion in Baylor's Honors College. "Some people are alienated from some common traditions such as a long funeral Mass. Cohesive ...
Alexandria, VA – In the first study of its kind, the American Geosciences Institute (AGI) Workforce Program has published the results of the National Geoscience Student Exit Survey, which documents the experiences of graduating geosciences majors. Initial findings support that these new graduates, at all levels, shared some common traits such as the importance of field experiences and exposure to Earth science at the K-12 level.
The need for continued growth in the geoscience workforce is well documented and supported by its continuance as one of the most lucrative ...
ANN ARBOR—A microfluidic chip developed at the University of Michigan is among the best at capturing elusive circulating tumor cells from blood—and it can support the cells' growth for further analysis.
The device, believed to be the first to pair these functions, uses the advanced electronics material graphene oxide. In clinics, such a device could one day help doctors diagnose cancers, give more accurate prognoses and test treatment options on cultured cells without subjecting patients to traditional biopsies.
"If we can get these technologies to work, it will advance ...
BOSTON (Sept. 30, 2013) — Short-term hearing loss during childhood may lead to persistent hearing deficits, long after basic auditory sensitivity has returned to normal. The processing of sound in the brain is shaped by early experience. New research from Massachusetts Eye and Ear has identified two critical periods occurring shortly after hearing onset that regulate how sounds from each ear are fused into a coherent representation in the brain. Their research is described in Nature Communications.
Hearing scientist Daniel Polley, Ph.D., an investigator at Massachusetts ...
UCLA chemical engineering researchers have created a new synthetic metabolic pathway for breaking down glucose that could lead to a 50 percent increase in the production of biofuels.
The new pathway is intended to replace the natural metabolic pathway known as glycolysis, a series of chemical reactions that nearly all organisms use to convert sugars into the molecular precursors that cells need. Glycolysis converts four of the six carbon atoms found in glucose into two-carbon molecules known acetyl-CoA, a precursor to biofuels like ethanol and butanol, as well as fatty ...