(Press-News.org) A new method for creating stem cells for the human liver and pancreas, which could enable both cell types to be grown in sufficient quantities for clinical use, has been developed by scientists.
Using the technique, researchers have for the first time been able to grow a pure, self-renewing population of stem cells specific to the human foregut, the upper section of the human digestive system.
These so-called "Foregut stem cells" could then be developed further to produce liver or pancreatic cells. The method significantly improves on existing techniques for cultivating this type of stem cell, and raises the possibility that, with further work, they could be grown in large numbers in bioreactors. That would make it possible to use them for regenerative therapies, repairing damaged organs or tissues in the body, and treating conditions such as type I diabetes or liver disease.
"We have developed a cell culture system which allows us to specifically isolate foregut stem cells in the lab," Dr Nicholas Hannan, from the University of Cambridge Wellcome Trust MRC Stem Cell Institute, Department of Surgery, explained. Hannan led the study, which was carried out in the lab of Dr Ludovic Vallier.
"These cells have huge implications for regenerative medicine, because they are the precursors to the thyroid upper airways, lungs, liver, pancreas, stomach and biliary systems. We now have a system where we may be able to create all these cell types from the same starting population."
As reported in the journal Stem Cell Reports, the method also means that researchers will be able to analyse the embryonic development of foregut cells in greater depth. "We now have a platform from which we can study the early patterning events that occur during human development to produce the intestines, liver, lungs and pancreas," Hannan added.
The approach marks a breakthrough because it overcomes some of the problems which currently limit scientists' abilities to grow cells associated with the liver, pancreas, and other parts of the foregut in sufficiently large numbers for clinical use.
Stem cell growth starts with human pluripotent stem cells (hPSCs). These are non-specialised biological cells with the potential to transform - or "differentiate" - into any of the three primary layers of cells from which all tissues and organs develop. Because these cells also self-renew, creating copies of themselves, they offer the potential to provide an infinite source of clinically usable cells for regenerative medicine.
Achieving this, however, relies on scientists developing effective methods through which they can influence the differentiation of hPSCs. To grow pancreatic or liver cells, hPSCs are differentiated into the endoderm - the primary tissue layer associated with the digestive and respiratory systems. This provides a base population of progenitors which researchers can then try to develop as more specialised cells.
Unfortunately, the approach is far from perfect. In particular, it is difficult to produce a pure population of the required progenitors, and "contaminating" cells of the wrong type are typically found within the cell culture. This makes it difficult to identify the target cells for further differentiation in the lab and can complicate the application of these cells in transplant therapies. In some cases, hPSCs also produce such a large number of contaminating cells that the precursor population becomes unusable.
To address these limitations, the research team carried out a detailed study of the conditions in which stem cells differentiate specifically into the human foregut - the section of the digestive system extending from the mouth to the duodenum, and including the liver and pancreas.
By manipulating the signal pathways of the cells, and varying the environment in which the cells were developed and the substrate on which they were grown, they were able to isolate the precise culture needed for the differentiation of cells associated with the foregut itself. When heavily contaminated stem cell populations were developed under these conditions, the contaminating, non-endodermal cells eventually stopped proliferating and gradually disappeared. The universal nature of this culture system takes a step towards a universal system that could be used to treat any patient requiring cells for transplantation purposes.
The result was a much purer, self-renewing population of human foregut stem cells (hFSCs). The cells generated are true stem cells because they are able to self renew and can differentiate towards any part of the foregut. Because they are also still at the stage where they self-renew, they could be grown in large enough numbers to be used in clinical therapies.
The team was also able to show that these human foregut stem cells do not form tumours, which means that they can be safely injected for therapeutic purposes, without having adverse side effects.
Although the procedure does not improve scientists' ability to produce pancreatic or liver cells specifically, it does provide a much purer source population for doing so. "What we have now is a better starting point - a sustainable platform for producing liver and pancreatic cells," Dr Ludovic Vallier said, senior author of the study. "It will improve the quality of the cells that we produce and it will allow us to produce the large number of uncontaminated cells we need for the clinical application of stem cell therapy."
The team is now building on the research by studying the fundamental mechanisms which control the differentiation of hFSCs specifically as liver cells or pancreatic cells, to further improve the production of these cell types for regenerative medicine.
INFORMATION:
Stem cell breakthrough could set up future transplant therapies
2013-10-10
ELSE PRESS RELEASES FROM THIS DATE:
Soft shells and strange star clusters
2013-10-10
PGC 6240 is an elliptical galaxy that resembles a pale rose in the sky, with hazy shells of stars encircling a very bright centre. Some of these shells are packed close to the centre of the galaxy, while others are flung further out into space. Several wisps of material have been thrown so far that they appear to be almost detached from the galaxy altogether.
Astronomers have studied PGC 6240 in detail due to this structure, and also because of its surrounding globular clusters — dense, tightly packed groups of gravitationally bound stars that orbit galaxies. Over 150 ...
Direct 'writing' of artificial cell membranes on graphene
2013-10-10
Writing in Nature Communications, researchers at The University of Manchester led by Dr Aravind Vijayaraghavan, and Dr Michael Hirtz at the Karlsruhe Institute of Technology (KIT), have demonstrated that membranes can be directly 'written' on to a graphene surface using a technique known as Lipid Dip-Pen Nanolithography (L-DPN).
The human body contains 100 trillion cells, each of which is enveloped in a cell membrane which is essentially a phospholipid bi-layer membrane. These cell membranes have a plethora of proteins, ion channels and other molecules embedded in them, ...
Look out above! Experiment explores innate visual behavior in mice
2013-10-10
When you're a tiny mouse in the wild, spotting aerial predators—like hawks and owls—is essential to your survival. But once you see an owl, how is this visual cue processed into a behavior that helps you to avoid an attack? Using an experimental video technique, researchers at the California Institute of Technology (Caltech) have now developed a simple new stimulus with which they can spur the mouse's escape plans. This new stimulus allows the researchers to narrow down cell types in the retina that could aid in the detection of aerial predators.
"The mouse has recently ...
Super-enhancers seen as 'Rosetta Stone' for dialog between genes and disease
2013-10-10
CAMBRIDGE, Mass. (October 10, 2013) – Having recently discovered a set of powerful gene regulators that control cell identity in a few mouse and human cell types, Whitehead Institute scientists are now showing that these regulators—which they named "super-enhancers"—act across a vast array of human cell types and are enriched in mutated regions of the genome that are closely associated with a broad spectrum of diseases.
The findings, published online today by the journal Cell, suggest that these super-enhancers, first described in Cell several months ago by Whitehead ...
Genes predispose some people to focus on the negative
2013-10-10
A new study by a University of British Columbia researcher finds that some people are genetically predisposed to see the world darkly.
The study, published in Psychological Science, finds that a previously known gene variant can cause individuals to perceive emotional events—especially negative ones – more vividly than others.
"This is the first study to find that this genetic variation can significantly affect how people see and experience the world," says Prof. Rebecca Todd of UBC's Dept. of Psychology. "The findings suggest people experience emotional aspects of ...
Scientists find potential new targets for anti-inflammatory therapies
2013-10-10
LA JOLLA, CA -- October 9, 2013 -- A team led by scientists at The Scripps Research Institute (TSRI) has identified key signaling proteins in the inflammation process that contribute to the development of inflammatory diseases such as rheumatoid arthritis, psoriasis, sepsis and inflammatory bowel diseases. The finding highlights possible new ways of treating these inflammation disorders, which sicken or kill millions of people around the world each year.
"We hope our approach will lead to the development of drugs that augment current anti-inflammatory strategies," said ...
Gene movements observed in vivo
2013-10-10
This new method will be a great step forwards to understanding the resulting processes that control gene regulation.
These results were published on October 6, 2013 on the website of the review Nature Structural & Molecular Biology.
In the cell nucleus, DNA is highly dynamic and changes its spatial configuration, in the same way as during the process of cell division. We already know that the spatial configuration of DNA determines whether the genes are active or inactive, in other words whether they are capable of expression. In this study, the researchers attempted ...
Correcting emotional misunderstandings
2013-10-10
When we are sad the world seemingly cries with us. On the contrary, when we are happy everything shines and all around people's faces seem to rejoyce with us. These projection mechanisms of one's emotions onto others are well known to scientists, who believe they are at the core of the ability to interpret and relate to others. In some circumstances, however, this may lead to gross mistakes (called egocentricity bias in the emotional domain EEB), to avoid them cerebral mechanisms are activated about which still little is known.
Giorgia Silani, a neuroscientist at SISSA, ...
Weight loss through the use of intestinal barrier sleeves
2013-10-10
Bariatric surgeries, such as a gastric bypass, are currently the most effective anti-obesity therapies. They also lead to a reduced insulin resistance. However, the pitfall of these surgical interventions is that they are highly invasive and often permanent procedures. An international team of scientists led by Dr. Kirk Habegger, Metabolic Disease Institute, University of Cincinnati, and Prof. Dr. Matthias Tschöp, Scientific Director of the Helmholtz Diabetes Center (HDC) at the Helmholtz Zentrum München (HMGU), Partner of the German Center for Diabetes Research (DZD), ...
Malaria, toxoplasmosis: Toward new lines of research?
2013-10-10
This work, published on 10th October on the website of Nature Communications, concerns the role of one protein which is common to these parasites. Called AMA1, it has been at the heart of many years' research on upgrading treatments, such as trying out vaccination against malaria. However, the present authors have reservations about the success of therapeutic strategies which rely solely on the blockage of AMA1, by demonstrating that the malaria and toxoplasmosis parasites, without the protein, can develop normally.
With 1 million victims every year, malaria is the most ...