PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

New hologram technology created with tiny nanoantennas

2013-11-15
(Press-News.org) Contact information: Emil Venere
venere@purdue.edu
765-494-4709
Purdue University
New hologram technology created with tiny nanoantennas

WEST LAFAYETTE, Ind. – Researchers have created tiny holograms using a "metasurface" capable of the ultra-efficient control of light, representing a potential new technology for advanced sensors, high-resolution displays and information processing. The metasurface, thousands of V-shaped nanoantennas formed into an ultrathin gold foil, could make possible "planar photonics" devices and optical switches small enough to be integrated into computer chips for information processing, sensing and telecommunications, said Alexander Kildishev, associate research professor of electrical and computer engineering at Purdue University.

Laser light shines through the nanoantennas, creating the hologram 10 microns above the metasurface. To demonstrate the technology, researchers created a hologram of the word PURDUE smaller than 100 microns wide, or roughly the width of a human hair.

"If we can shape characters, we can shape different types of light beams for sensing or recording, or for example pixels for 3-D displays. Another potential application is the transmission and processing of data inside chips for information technology," Kildishev said. "The smallest features -- the strokes of the letters -- displayed in our experiment are only 1 micron wide. This is a quite remarkable spatial resolution."

Findings are detailed in a research paper appearing on Friday (Nov. 15) in the journal Nature Communications.

Metasurfaces could make it possible to use single photons -- the particles that make up light -- for switching and routing in future computers. While using photons would dramatically speed up computers and telecommunications, conventional photonic devices cannot be miniaturized because the wavelength of light is too large to fit in tiny components needed for integrated circuits. Nanostructured metamaterials, however, are making it possible to reduce the wavelength of light, allowing the creation of new types of nanophotonic devices, said Vladimir M. Shalaev, scientific director of nanophotonics at Purdue's Birck Nanotechnology Center and a distinguished professor of electrical and computer engineering.

"The most important thing is that we can do this with a very thin layer, only 30 nanometers, and this is unprecedented," Shalaev said. "This means you can start to embed it in electronics, to marry it with electronics."

The layer is about 1/23rd the width of the wavelength of light used to create the holograms.

The Nature Communications article was co-authored by former Purdue doctoral student Xingjie Ni, who is now a postdoctoral researcher at the University of California, Berkeley; Kildishev; and Shalaev.

Under development for about 15 years, metamaterials owe their unusual potential to precision design on the scale of nanometers. Optical nanophotonic circuits might harness clouds of electrons called "surface plasmons" to manipulate and control the routing of light in devices too tiny for conventional lasers.

The researchers have shown how to control the intensity and phase – or timing – of laser light as it passes through the nanoantennas. Each antenna has its own "phase delay" -- how much light is slowed as it passes through the structure. Controlling the intensity and phase is essential for creating working devices and can be achieved by altering the V-shaped antennas.



INFORMATION:

The work is partially supported by U.S. Air Force Office of Scientific Research, Army research Office, and the National Science Foundation. Purdue has filed a provisional patent application on the concept.

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Sources: Alexander Kildishev, 765-496-3196, kildishev@purdue.edu

Vladimir Shalaev, 765-494-9855, shalaev@ecn.purdue.edu

Related website:

Birck Nanotechnology Center: http://www.purdue.edu/discoverypark/nanotechnology/

IMAGE CAPTION:

Researchers have created tiny holograms using a "metasurface" capable of the ultra-efficient control of light, representing a potential new technology for advanced sensors, high-resolution displays and information processing. To demonstrate the technology, researchers created a hologram of the word PURDUE smaller than 100 microns wide, or roughly the width of a human hair. (Xingjie Ni, Birck Nanotechnology Center)

A publication-quality image is available at http://news.uns.purdue.edu/images/2013/kildishev-hologram.jpg

IMAGE CAPTION:

Laser light shines through the metasurface from below, creating a hologram 10 microns above the structure. (Xingjie Ni, Birck Nanotechnology Center) A publication-quality image is available at http://news.uns.purdue.edu/images/2013/kildishev-hologram2.jpg

ABSTRACT

Metasurface holograms for visible light

Xingjie Ni, Alexander V. Kildishev and Vladimir M. Shalaev

School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University

Holography, a revolutionary 3D imaging technique, has been developed for storing and recovering the amplitude and phase of light scattered by objects. Later, single-beam computer-generated phase holography was proposed for restoring the wavefront from a given incidence. However, because the phase modulation depends on the light propagation inside the material, the thickness of phase holograms usually remains comparable to the wavelength. Here we experimentally demonstrate ultra-thin metasurface holograms that operate in the visible range whose thickness is only 30 nm (approximately 1/23 of the operational wavelength). To our knowledge, this is the thinnest hologram that can provide both amplitude and phase modulation in the visible wavelength range, which generates high-resolution low-noise images. Using this technique, not only the phase, but potentially the amplitude of the incident wave can be efficiently controlled–expanding the route to new applications of ultra-thin and surface-confined photonic devices.

Note to Journalists: A copy of the article is available by contacting Nature at press@nature.com or calling (212) 726-9231. (check phone number)



ELSE PRESS RELEASES FROM THIS DATE:

Protein quality: It matters

2013-11-15
Protein quality: It matters Research presented at SupplySide West shows the superiority of whey protein Las Vegas, Nov. 15, 2013 – As science continues to support the role of protein in building and maintaining lean muscle, maintaining weight and aging healthy, consumers ...

Team-based approaches needed to fight high blood pressure

2013-11-15
Team-based approaches needed to fight high blood pressure American Heart Association, American College of Cardiology, Centers for Disease Control and Prevention Scientific Advisory Uncontrolled high blood pressure rates continue to grow despite the availability ...

Vivax malaria may be evolving around natural defense

2013-11-15
Vivax malaria may be evolving around natural defense 3 gene mutations appear to be invasion mechanisms CLEVELAND—Researchers at Case Western Reserve University and Cleveland Clinic Lerner Research Institute have discovered recent genetic mutations ...

Study shows wind turbines killed 600,000 bats last year

2013-11-15
Study shows wind turbines killed 600,000 bats last year Bats pollinate crops, control insects DENVER (Nov. 15, 2013) - More than 600,000 bats were killed by wind energy turbines in 2012, a serious blow to creatures who pollinate crops and help control flying ...

The Gorgons of the eastern Pacific: scientists describe 2 new gorgonian soft coral species

2013-11-15
The Gorgons of the eastern Pacific: scientists describe 2 new gorgonian soft coral species Gorgonians are a type of soft corals easily distinguishable by the complex branching shape, which has also probably inspired their name, coming from the Gorgon Medusa- a creature from the ...

Tasmania home to first alpine sword-sedge

2013-11-15
Tasmania home to first alpine sword-sedge Researchers from the University of New England (Australia) and the Royal Botanic Gardens and Domain Trust, Sydney (Australia), have discovered a high-altitude species of sedge from south-western Tasmania. A small clumping plant, ...

Study unveils SINE's potential of re-activating tumor fighting proteins within a cell

2013-11-15
Study unveils SINE's potential of re-activating tumor fighting proteins within a cell Tumor suppressor proteins activate damaged cell's own suicide program Arnhem, The Netherlands - New study suggests that selective blockade of CRM1-dependent nuclear ...

Italian study examines clinical predictors of acute urinary symptoms after radiotherapy for prostate

2013-11-15
Italian study examines clinical predictors of acute urinary symptoms after radiotherapy for prostate Arnhem, The Netherlands - An interim study by Italian researchers showed that using a modelling programme together with IPSS and dosage measure can predict the ...

Nanoparticles to probe mystery sperm defects behind infertility

2013-11-15
Nanoparticles to probe mystery sperm defects behind infertility A way of using nanoparticles to investigate the mechanisms underlying 'mystery' cases of infertility has been developed by scientists at Oxford University. The technique, ...

Success of climate talks vital for 2°C target

2013-11-15
Success of climate talks vital for 2°C target This is shown by the first comprehensive multi-model-based assessment of so-called Durban Platform scenarios, conducted by a team of international scientists led by the Potsdam Institute ...

LAST 30 PRESS RELEASES:

Living heritage: How ancient buildings on Hainan Island sustain hidden plant diversity

Just the smell of lynx can reduce deer browsing damage in recovering forests

Hidden struggles: Cambridge scientists share the truth behind their success

Cellular hazmat team cleans up tau. Could it prevent dementia?

Innovation Crossroads startup revolutionizes wildfire prevention through grid hardening

ICCUB astronomers lead the most ambitious study of runaway massive stars in the Milky Way

Artificial Intelligence can generate a feeling of intimacy

Antidepressants not associated with serious complications from TBI

Evasive butterfly mimicry reveals a supercharged biodiversity feedback loop

Hearing angry or happy human voices is linked to changes in dogs’ balance

Microplastics are found in a third of surveyed fish off the coasts of remote Pacific Islands

De-stigmatizing self-reported data in health care research

US individuals traveling from strongly blue or red US counties may favor everyday travel to like-minded destinations

Study reveals how superionic state enables long-term water storage in Earth's interior

AI machine learning can optimize patient risk assessments

Efficacy of immunosuppressive regimens for survival of stem cell-derived grafts

Glowing bacterial sensors detect gut illness in mice before symptoms emerge

GLP-1 RAs and prior major adverse limb events in patients with diabetes

Life-course psychosocial stress and risk of dementia and stroke in middle-aged and older adults

Cells have a built-in capacity limit for copying DNA, and it could impact cancer treatment

Study finds longer hospital stays and higher readmissions for young adults with complex childhood conditions

Study maps how varied genetic forms of autism lead to common features

New chip-sized, energy-efficient optical amplifier can intensify light 100 times

New light-based platform sets the stage for future quantum supercomputers

Pesticides significantly affect soil life and biodiversity

Corals sleep like us, but their symbiosis does not rest

Huayuan biota decodes Earth’s first Phanerozoic mass extinction

Beyond Polymers: New state-of-the-art 3D micro and nanofabrication technique overcomes material limitations

New platform could develop vaccines faster than ever before

TF-rs1049296 C>T variant modifies the association between hepatic iron stores and liver fibrosis in metabolic dysfunction-associated steatotic liver disease

[Press-News.org] New hologram technology created with tiny nanoantennas