(Press-News.org) Contact information: Juliette Savin
juliette.savin@riken.jp
RIKEN
'Magic numbers' disappear and expand area of nuclear deformation
A team of researchers from the RIKEN Nishina Center for Accelerator-Based Science in Japan has demonstrated that the magic numbers 20 and 28 disappear from all neutron-rich magnesium isotopes, thereby establishing a new, larger area of nuclear deformation in the nuclear chart.
The Japanese study, published today in the prestigious journal Physical Review Letters, was made possible by the intense beam at the Radioactive Beam Factory (RIBF) at RIKEN, which produces the most intense radioactive isotope beams in the world.
Inside the atomic nucleus, protons and neutrons are organized in shell structures similar to the electron shell around an atom. When proton or neutron shells are filled with 2, 8, 20, 28, 50, 82, or 126 nucleons, these numbers are called "magic" and nuclei assume spherical shapes. In contrast, nuclei lose their spherical shape and become "deformed" when the number of nucleons is not a magic number.
Recent experimental data on neutron-rich, radioactive isotopes has challenged the assumption that magic numbers are the same for all nuclei. The neutron-rich isotope 32Mg, which is composed of 12 protons and 20 neutrons, has been shown to be deformed by the disappearance of the neutron magic number 20, for example. In addition, 42Si, with 14 protons and 28 neutrons, is also deformed.
The "Island of Deformation" is the region in the nuclear chart comprising elements known to lose their neutron magic number 20. This region was previously thought to be composed of only a few nuclei around 32Mg. In the current study, the team led by Dr Pieter Doornenbal and Dr Hiroyoshi Sakurai, sought to understand whether the regions around 32Mg and 42Si are two isolated islands of deformation, or belong to the same, larger, connected area of deformation.
To carry out their experiment, the team accelerated a beam of stable 48Ca up to 70% of the speed of light and projected it onto a beryllium target. The resulting radioactive 39Al and 40Si were selected and purified into beams that were shot at 60 % of the speed of light onto a carbon target. This second step produced neutron-rich, radioactive magnesium isotopes 34,36,38Mg. By measuring the energy levels of the gamma rays emitted by the first excited states of these isotopes, the team could conclude that they all displayed a very deformed shape, and had lost their magic numbers 20 and 28.
"For the past two decades, the RIKEN Nishina Center has pioneered research on exotic nuclei in this region of the nuclear chart, and the disappearance of the neutron magic number 20. Thanks to the power of RIBF, we can now study many more neutron-rich nuclei. When we saw our results we were very surprised about the magnitude of the Island of Deformation," explained Dr Doornenbal.
"Measuring the evolution of nuclear shells helps us understand the underlying forces inside the nucleus, that play also an important role in the creation of new chemical elements during supernovae," added Dr Doornenbal.
INFORMATION:
Alternatively, for more information please contact:
Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
Email: pr@riken.jp
Reference
In-beam gamma-ray spectroscopy of 34,36,38Mg: Merging the N=20 and N=28 shell quenching
Physical Review Letters, 2013
About RIKEN
RIKEN is Japan's largest research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in leading scientific and technology journals covering a broad spectrum of disciplines including physics, chemistry, biology, engineering, and medical science. RIKEN's research environment and strong emphasis on interdisciplinary collaboration and globalization has earned a worldwide reputation for scientific excellence.
Website: http://www.riken.jp
Find us on Twitter at @riken_en
About the Nishina Center for Accelerator-Based Science
The Nishina Center for Accelerator-Based Science is a world-leading accelerator facility, home to the most powerful cyclotron in the world. Using its accelerators, researchers study the structure and properties of different types of unstable nuclei in an attempt to uncover the mystery of the origin of matter and for applications in the life and medical sciences. The center is unique in that it fosters close collaborations between theoretical and experimental scientists, not only in Japan at the Wako campus but also at RIKEN's overseas facilities in the USA and the UK.
'Magic numbers' disappear and expand area of nuclear deformation
2013-11-19
ELSE PRESS RELEASES FROM THIS DATE:
'CaroTex-312,' new Habanero-type pepper introduced
2013-11-19
'CaroTex-312,' new Habanero-type pepper introduced
Virus-resistant hybrid features high yields, disease-resistant attributes
COLLEGE STATION, TX--The Agricultural Research Service of the U.S. Department of Agriculture (USDA) and the College of Agriculture ...
Shadehouses with photoselective nets featured in study of growing conditions
2013-11-19
Shadehouses with photoselective nets featured in study of growing conditions
Study results may help predict plant responses to light, temperature
APOPKA, FL--Shade nets are widely used in ornamental crop production systems to protect crops from ...
MAVEN launches on 10-month journey to Mars orbit
2013-11-19
MAVEN launches on 10-month journey to Mars orbit
NASA's Mars Atmosphere and Volatile Evolution (MAVEN) mission began with a smooth countdown and flawless launch from Cape Canaveral Air Force Station's Space Launch Complex 41. The United Launch Alliance Atlas V ...
High tunnel, open-field production systems compared for lettuce, tomato
2013-11-19
High tunnel, open-field production systems compared for lettuce, tomato
Scientists in western Washington use crop enterprise budgets to evaluate production practices
MOUNT VERNON, WA--In the mild coastal climate of western Washington, agricultural ...
NASA instrument determines hazards of deep-space radiation
2013-11-19
NASA instrument determines hazards of deep-space radiation
Deep-space radiation is a significant danger for interplanetary human space flight. But now an instrument on NASA's Lunar Reconnaissance Orbiter (LRO) has learned more than ever before about the high-energy ...
Researchers test effects of LEDs on leaf lettuce
2013-11-19
Researchers test effects of LEDs on leaf lettuce
Mixture of blue and red lights recommended to enhance lettuce quality, yield
CHEONGJU, SOUTH KOREA--In the life cycle of plants, most developmental processes are dependent on light. Significant biological ...
Researchers develop technique to convert thermoelectric material into high performance electricity
2013-11-19
Researchers develop technique to convert thermoelectric material into high performance electricity
A team of Clemson University physicists consisting of nanomaterial scientists Apparao Rao and Ramakrishna Podila and thermoelectricians Terry Tritt, Jian He and Pooja Puneet ...
The fashion scout and the cop: Scanning the streets with similar methods for different targets
2013-11-19
The fashion scout and the cop: Scanning the streets with similar methods for different targets
University of Cincinnati research compares practices used by fashion industry casting directors to the New York City Police Department's controversial stop-and-frisk program.
New ...
Zinc sulfate, sugar alcohol zinc sprays improve apple quality
2013-11-19
Zinc sulfate, sugar alcohol zinc sprays improve apple quality
Study recommends continuing zinc application at critical stages on apple trees
SHANDONG PROVINCE, CHINA--Zinc is vital for the healthy growth and reproduction of all organisms. ...
Asteroids' close encounters with Mars
2013-11-19
Asteroids' close encounters with Mars
CAMBRIDGE, MA -- For nearly as long as astronomers have been able to observe asteroids, a question has gone unanswered: Why do the surfaces of most asteroids appear redder than meteorites — the remnants of asteroids ...