PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Stanford study could lead to paradigm shift in organic solar cell research

2013-11-20
(Press-News.org) Contact information: Mark Shwartz
mshwartz@stanford.edu
650-723-9296
Stanford University
Stanford study could lead to paradigm shift in organic solar cell research

Organic solar cells have long been touted as lightweight, low-cost alternatives to rigid solar panels made of silicon. Dramatic improvements in the efficiency of organic photovoltaics have been made in recent years, yet the fundamental question of how these devices convert sunlight into electricity is still hotly debated.

Now a Stanford University research team is weighing in on the controversy. Their findings, published in the Nov. 17 issue of the journal Nature Materials, indicate that the predominant working theory is incorrect, and could steer future efforts to design materials that boost the performance of organic cells.

"We know that organic photovoltaics are very good," said study coauthor Michael McGehee, a professor of materials science and engineering at Stanford. "The question is, why are they so good? The answer is controversial."

A typical organic solar cell consists of two semiconducting layers made of plastic polymers and other flexible materials. The cell generates electricity by absorbing particles of light, or photons.

When the cell absorbs light, a photon knocks out an electron in a polymer atom, leaving behind an empty space, which scientists refer to as a hole. The electron and the hole immediately form a bonded pair called an exciton. The exciton splits, allowing the electron to move independently to a hole created by another absorbed photon. This continuous movement of electrons from hole to hole produces an electric current.

In the study, the Stanford team addressed a long-standing debate over what causes the exciton to split.

"To generate a current, you have to separate the electron and the hole," said senior author Alberto Salleo, an associate professor of materials science and engineering at Stanford. "That requires two different semiconducting materials. If the electron is attracted to material B more than material A, it drops into material B. In theory, the electron should remain bound to the hole even after it drops.

"The fundamental question that's been around a long time is, how does this bound state split?"

Some like it hot

One explanation widely accepted by scientists is known as the "hot exciton effect." The idea is that the electron carries extra energy when it drops from material A to material B. That added energy gives the excited ("hot") electron enough velocity to escape from the hole.

But that hypothesis did not stand up to experimental tests, according to the Stanford team.

"In our study, we found that the hot exciton effect does not exist," Salleo said. "We measured optical emissions from the semiconducting materials and found that extra energy is not required to split an exciton."

So what actually causes electron-hole pairs to separate?

"We haven't really answered that question yet," Salleo said. "We have a few hints. We think that the disordered arrangement of the plastic polymers in the semiconductor might help the electron get away."

In a recent study, Salleo discovered that disorder at the molecular level actually improves the performance of semiconducting polymers in solar cells. By focusing on the inherent disorder of plastic polymers, researchers could design new materials that draw electrons away from the solar cell interface where the two semiconducting layers meet, he said.

"In organic solar cells, the interface is always more disordered than the area further away," Salleo explained. "That creates a natural gradient that sucks the electron from the disordered regions into the ordered regions. "

Improving energy efficiency

The solar cells used in the experiment have an energy-conversion efficiency of about 9 percent. The Stanford team hopes to improve that performance by designing semiconductors that take advantage of the interplay between order and disorder.

"To make a better organic solar cell, people have been looking for materials that would give you a stronger hot exciton effect," Salleo said. "They should instead try to figure out how the electron gets away without it being hot. This idea is pretty controversial. It's a fundamental shift in the way people think about photocurrent generation."



INFORMATION:

Other authors of the paper are Koen Vandewal (lead author), Erik Hoke, William Mateker, Jason Bloking and George Burkhard of Stanford; Steve Albrecht, Marcel Schubert and Dieter Neher of the University of Potsdam; Johannes Widmer and Moritz Riede of the Institute for Applied Photophysics (IAPP); Jessica Douglas and Jean Frechet of the University of California-Berkeley; Aram Amassian of the King Abdullah University of Science and Technology (KAUST); and Alan Sellinger of the Colorado School of Mines and the University of Oxford. Author Kenneth Graham has a joint postdoctoral fellowship with Stanford and KAUST.

Support for the study was provided by the Stanford Center for Advanced Molecular Photovoltaics and the U.S. Department of Energy.

This article was written by Mark Shwartz, Precourt Institute for Energy, Stanford University.



ELSE PRESS RELEASES FROM THIS DATE:

New study finds no benefit to selecting dose of blood thinner based on patients' genetic makeup

2013-11-20
New study finds no benefit to selecting dose of blood thinner based on patients' genetic makeup Largest randomized, multi-center controlled trial of gene-based strategy for warfarin dosing also found better outcome for African ...

Edoxaban effective in preventing stroke, reducing bleeding and cardiovascular death in patients with atrial fibrillation

2013-11-20
Edoxaban effective in preventing stroke, reducing bleeding and cardiovascular death in patients with atrial fibrillation Boston, MA – According to the United States Centers for Disease Control and Prevention, over 800,000 ...

Bedroom access to screen-based media may contribute to sleep problems in boys with autism, MU researchers find

2013-11-20
Bedroom access to screen-based media may contribute to sleep problems in boys with autism, MU researchers find Having bedroom access to television, computers or video games is linked to less sleep in boys with autism spectrum disorder (ASD), a team of University ...

Higher emotional intelligence leads to better decision-making

2013-11-20
Higher emotional intelligence leads to better decision-making Toronto – The anxiety people feel making investment decisions may have more to do with the traffic they dealt with earlier than the potential consequences they face with the ...

Enhancing battery performance

2013-11-20
Enhancing battery performance In APL Materials paper, researchers show how to keep cathode material 'in line' to enhance performance WASHINGTON D.C. Nov. 19, 2013 -- The ever-increasing market for portable electronic devices such as laptops, cell phones ...

The human health costs of losing natural systems: Quantifying Earth's worth to public health

2013-11-20
The human health costs of losing natural systems: Quantifying Earth's worth to public health Scientists urge focus on new branch of environmental health A new paper from members of the HEAL (Health & Ecosystems: Analysis of Linkages) consortium delineates a new ...

Obesity and nutrition are keys to avoiding metabolic syndrome

2013-11-20
Obesity and nutrition are keys to avoiding metabolic syndrome MINNEAPOLIS, MN – November 19, 2013 – Data reported by the Hearts Beat Back: The Heart of New Ulm Project reinforce the positive influence of lifestyle factors in mitigating risks that ...

Tuesday, Nov. 19, 2013 news tips

2013-11-20
Tuesday, Nov. 19, 2013 news tips Disappearing stent continues protection for 3 years Propping open clogged heart arteries with a "disappearing stent" has worked well for three years in the first people implanted with the unique device, according to research presented ...

Holistic cell design leads to high-performance, long cycle-life Li/S battery

2013-11-20
Holistic cell design leads to high-performance, long cycle-life Li/S battery Berkeley Lab battery a promise for mobile, and eventually, electric vehicles with 300-mile range Researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory ...

Holiday shopping online: Don't overwhelm consumers with too many images

2013-11-20
Holiday shopping online: Don't overwhelm consumers with too many images If presented with looking at an image or reading a paragraph describing the same product, consumers often prefer the visual option. However, according to a new study in the Journal ...

LAST 30 PRESS RELEASES:

Study paints detailed picture of forest canopy damage caused by ‘heat dome’

New effort launched to support earlier diagnosis, treatment of aortic stenosis

Registration and Abstract Submission Open for “20 Years of iPSC Discovery: A Celebration and Vision for the Future,” 20-22 October 2026, Kyoto, Japan

Half-billion-year-old parasite still threatens shellfish

Engineering a clearer view of bone healing

Detecting heart issues in breast cancer survivors

Moffitt study finds promising first evidence of targeted therapy for NRAS-mutant melanoma

Lay intuition as effective at jailbreaking AI chatbots as technical methods

USC researchers use AI to uncover genetic blueprint of the brain’s largest communication bridge

Tiny swarms, big impact: Researchers engineering adaptive magnetic systems for medicine, energy and environment

MSU study: How can AI personas be used to detect human deception?

Slowed by sound: A mouse model of Parkinson’s Disease shows noise affects movement

Demographic shifts could boost drug-resistant infections across Europe

Insight into how sugars regulate the inflammatory disease process

PKU scientists uncover climate impacts and future trends of hailstorms in China

Computer model mimics human audiovisual perception

AC instead of DC: A game-changer for VR headsets and near-eye displays

Prevention of cardiovascular disease events and deaths among black adults via systolic blood pressure equity

Facility-based uptake of colorectal cancer screening in 45- to 49-year-olds after US guideline changes

Scientists uncover hidden nuclear droplets that link multiple leukemias and reveal a new therapeutic target

A new patch could help to heal the heart

New study shows people with spinal cord injuries are more likely to develop chronic disorders

Heat as a turbo-boost for immune cells

Jülich researchers reveal: Long-lived contrails usually form in natural ice clouds

Controlling next-generation energy conversion materials with simple pressure

More than 100,000 Norwegians suffer from work-related anxiety

The American Pediatric Society selects Dr. Harolyn Belcher as the recipient of the 2026 David G. Nichols Health Equity Award

Taft Armandroff and Brian Schmidt elected to lead Giant Magellan Telescope Board of Directors

FAU Engineering receives $1.5m gift to launch the ‘Ubicquia Innovation Center for Intelligent Infrastructure’

Japanese public show major reservations to cell donation for human brain organoid research

[Press-News.org] Stanford study could lead to paradigm shift in organic solar cell research