PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Searching for cosmic accelerators via IceCube

Berkeley Lab researchers part of an international hunt

2013-11-22
(Press-News.org) Contact information: Lynn Yarris
lcyarris@lbl.gov
510-486-5375
DOE/Lawrence Berkeley National Laboratory
Searching for cosmic accelerators via IceCube Berkeley Lab researchers part of an international hunt

In our universe there are particle accelerators 40 million times more powerful than the Large Hadron Collider (LHC) at CERN. Scientists don't know what these cosmic accelerators are or where they are located, but new results being reported from "IceCube," the neutrino observatory buried at the South Pole, may show the way. These new results should also erase any doubts as to IceCube's ability to deliver on its promise.

"The IceCube Collaboration has announced the observation of 28 extremely high energy events that constitute the first solid evidence for astrophysical neutrinos from outside our solar system," says Spencer Klein, a senior scientist with Lawrence Berkeley National Laboratory (Berkeley Lab) and a long-time member of the IceCube Collaboration. "These 28 events include two of the highest energy neutrinos ever reported, which have been named Bert and Ernie."

The new results from IceCube, which were published in the journal Science, provide experimental confirmation that somewhere in the universe, something is accelerating particles to energies above 50 trillion electron volts (TeV) and, in the cases of Bert and Ernie, exceeding one quadrillion electron volts (PeV). By comparison, the LHC accelerates protons to approximately four TeV in each of its beams. While not telling scientists what cosmic accelerators are or where they're located, the IceCube results do provide scientists with a compass that can help guide them to the answers.

Cosmic accelerators have announced their presence through the rare ultra-high energy version of cosmic rays, which, despite the name, are electrically-charged particles, mostly protons but also some heavier atomic nuclei like iron. It is known that ultra-high energy cosmic rays originate from beyond our solar system but the electrical charge they carry bends their flight paths as they pass through interstellar magnetic fields, making it impossible to determine where in the universe they came from. However as cosmic ray protons and nuclei are accelerated, they interact with gas and light, resulting in the emission of neutrinos with energies proportional to the energies of the cosmic rays that produced them. Electrically neutral and nearly massless, neutrinos are like phantoms that travel through space in a straight line from their point of origin, passing through virtually everything in their path without being impacted.

"The only way neutrinos interact is through the weak nuclear force, so they aren't deflected by magnetic fields in flight, and they easily slip through dense matter like stars that would stop the cosmic rays themselves," Klein says. "These same qualities that make neutrinos valuable observational tools also make neutrinos a challenge to study."

The IceCube observatory consists of 5,160 basketball-sized detectors called Digital Optical Modules (DOMs), which were conceived and largely designed at Berkeley Lab. The DOMS are suspended along 86 strings that are embedded in a cubic kilometer of clear ice starting one and a half kilometers beneath the Antarctic surface. Out of the trillions of neutrinos that pass through the ice each day, a couple of hundred will collide with oxygen nuclei, yielding the blue light of Cherenkov radiation that IceCube's DOMs detect.

"Each of IceCube's DOMs was designed to be a mini-computer server that you can log onto and download data from, or upload software to," says Robert Stokstad, a senior scientist with Berkeley Lab's Nuclear Science Division who led the development of the DOMs and was one of the original proponents of IceCube. "It is rewarding to see how well they are performing."

The 28 high-energy neutrinos reported in Science by the IceCube Collaboration were found in data collected from May 2010 to May 2012. In analyzing more recent data, Berkeley Lab's Lisa Gerhardt discovered another event that was almost double the energy of Bert and Ernie. Dubbed "Big Bird," this new event was presented by Klein at the International Cosmic-Ray Conference.

"Like most scientific discoveries, finding Big Bird was a combination of hard work and luck and it took place on the afternoon of my last day of work on IceCube," Gerhardt says, who at the time of her discovery was with Berkeley Lab's Nuclear Science Division and is now with the National Energy Research Scientific Computing Center (NERSC), where the supercomputing resources are being used to sift out neutrino signals from cosmic noise in the IceCube observations.

"At first I was in disbelief, thinking there must be some other explanation for this enormous event," Gerhardt says. "However, one-by-one alternate explanations were disproved until finally we knew that we had found the most energetic event in IceCube yet, most likely from an astrophysical neutrino. I was able to leave IceCube with a bang!"

As to the identity of the mysterious cosmic accelerators, Klein thinks these early results from IceCube favor active galactic nuclei, the enormous particle jets ejected by a black hole after it swallows a star.

"The 28 events being reported are diffuse and do not point back to a source," Klein says, "but the big picture tends to suggest active galactic nuclei as the leading contender with the second leading contender being something we haven't even thought of yet."

The IceCube Collaboration currently consists of more than 200 researchers representing 39 institutions from 11 different countries, including Berkeley Lab. The collaboration is led by the University of Wisconsin-Madison and largely funded through the National Science Foundation. The collaboration's paper in Science is titled "Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector."

"After seeing hundreds of thousands of atmospheric neutrinos, we have found something different," says Francis Halzen, principal investigator of IceCube and the Hilldale and Gregory Breit Distinguished Professor of Physics at the University of Wisconsin–Madison."It is gratifying to finally see what we have been looking for. This is the dawn of a new age of astronomy."



INFORMATION:

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.



ELSE PRESS RELEASES FROM THIS DATE:

Does obesity reshape our sense of taste?

2013-11-22
Does obesity reshape our sense of taste? In a new study, mice who were overweight had fewer taste cells capable of detecting sweetness BUFFALO, N.Y. — Obesity may alter the way we taste at the most fundamental level: by changing how our tongues react to different ...

A hallmark for the development of testicular tumors found in the aberrant regulation of small non-coding RNA

2013-11-22
A hallmark for the development of testicular tumors found in the aberrant regulation of small non-coding RNA Researchers from the Bellvitge Biomedical Research Institute (IDIBELL) in Barcelona, Spain, have studied the role of a peculiar class of small non-coding RNAs that ...

Minority parents fear for kids online

2013-11-22
Minority parents fear for kids online Asian, Hispanic, black parents more concerned than whites about online safety issues EVANSTON, Ill. --- Nearly all parents agree -- when their children go online, stranger danger is their biggest safety concern, followed closely ...

Heavy drinking is bad for marriage if 1 spouse drinks, but not both

2013-11-22
Heavy drinking is bad for marriage if 1 spouse drinks, but not both BUFFALO, N.Y. – Do drinking and marriage mix? That depends on who's doing the drinking — and how much — according to a recent study by the University at Buffalo Research Institute on Addictions ...

Research paves path for hybrid nano-materials that could replace human tissue or today's pills

2013-11-22
Research paves path for hybrid nano-materials that could replace human tissue or today's pills Brooklyn, New York—A team of researchers has uncovered critical information that could help scientists understand how protein polymers interact ...

NASA sees 'watershed' cosmic blast in unique detail

2013-11-22
NASA sees 'watershed' cosmic blast in unique detail VIDEO: This animation shows the most common type of gamma-ray burst, thought to occur when a massive ...

Study looks at better prediction for epileptic seizures through adaptive learning approach

2013-11-22
Study looks at better prediction for epileptic seizures through adaptive learning approach UT Arlington assistant professor uses EEG readings A UT Arlington assistant engineering professor has developed a computational model that can more accurately predict ...

Sticky business: Magnetic pollen replicas offer multimodal adhesion

2013-11-22
Sticky business: Magnetic pollen replicas offer multimodal adhesion Researchers have created magnetic replicas of sunflower pollen grains using a wet chemical, layer-by-layer process that applies highly conformal iron oxide coatings. The replicas possess natural ...

Cannabis use among teens is on the rise in some developing countries

2013-11-22
Cannabis use among teens is on the rise in some developing countries It's common to associate cannabis use with affluent youth in wealthy societies. But the relationship between societal and family affluence and cannabis use appears to be changing. A study published online today in ...

New crizotinib side-effect

2013-11-21
New crizotinib side-effect Reduced measures of kidney function during treatment (recovery after) A University of Colorado Cancer Center study published today in the journal Cancer shows that using crizotinib to treat ALK positive non-small cell lung cancer (NSCLC) ...

LAST 30 PRESS RELEASES:

Deforestation in the Amazon raises the surface temperature by 3 °C during the dry season

Model more accurately maps the impact of frost on corn crops

How did humans develop sharp vision? Lab-grown retinas show likely answer

Sour grapes? Taste, experience of sour foods depends on individual consumer

At AAAS, professor Krystal Tsosie argues the future of science must be Indigenous-led

From the lab to the living room: Decoding Parkinson’s patients movements in the real world

Research advances in porous materials, as highlighted in the 2025 Nobel Prize in Chemistry

Sally C. Morton, executive vice president of ASU Knowledge Enterprise, presents a bold and practical framework for moving research from discovery to real-world impact

Biochemical parameters in patients with diabetic nephropathy versus individuals with diabetes alone, non-diabetic nephropathy, and healthy controls

Muscular strength and mortality in women ages 63 to 99

Adolescent and young adult requests for medication abortion through online telemedicine

Researchers want a better whiff of plant-based proteins

Pioneering a new generation of lithium battery cathode materials

A Pitt-Johnstown professor found syntax in the warbling duets of wild parrots

Cleaner solar manufacturing could cut global emissions by eight billion tonnes

Safety and efficacy of stereoelectroencephalography-guided resection and responsive neurostimulation in drug-resistant temporal lobe epilepsy

Assessing safety and gender-based variations in cardiac pacemakers and related devices

New study reveals how a key receptor tells apart two nearly identical drug molecules

Parkinson’s disease triggers a hidden shift in how the body produces energy

Eleven genetic variants affect gut microbiome

Study creates most precise map yet of agricultural emissions, charts path to reduce hotspots

When heat flows like water

Study confirms Arctic peatlands are expanding

KRICT develops microfluidic chip for one-step detection of PFAs and other pollutants

How much can an autonomous robotic arm feel like part of the body

Cell and gene therapy across 35 years

Rapid microwave method creates high performance carbon material for carbon dioxide capture

New fluorescent strategy could unlock the hidden life cycle of microplastics inside living organisms

HKUST develops novel calcium-ion battery technology enhancing energy storage efficiency and sustainability

High-risk pregnancy specialists present research on AI models that could predict pregnancy complications

[Press-News.org] Searching for cosmic accelerators via IceCube
Berkeley Lab researchers part of an international hunt