PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Study: Arctic seafloor methane releases double previous estimates

Storm activity hastens release of greenhouse gas into the atmosphere

2013-11-26
(Press-News.org) Contact information: Marmian Grimes
marmian.grimes@alaska.edu
907-474-7902
University of Alaska Fairbanks
Study: Arctic seafloor methane releases double previous estimates Storm activity hastens release of greenhouse gas into the atmosphere

The seafloor off the coast of Northern Siberia is releasing more than twice the amount of methane as previously estimated, according to new research results published in the Nov. 24 edition of the journal Nature Geoscience.

The East Siberian Arctic Shelf is venting at least 17 teragrams of the methane into the atmosphere each year. A teragram is equal to 1 million tons.

"It is now on par with the methane being released from the arctic tundra, which is considered to be one of the major sources of methane in the Northern Hemisphere," said Natalia Shakhova, one of the paper's lead authors and a scientist at the University of Alaska Fairbanks. "Increased methane releases in this area are a possible new climate-change-driven factor that will strengthen over time."

Methane is a greenhouse gas more than 30 times more potent than carbon dioxide. On land, methane is released when previously frozen organic material decomposes. In the seabed, methane can be stored as a pre-formed gas or as methane hydrates. As long as the subsea permafrost remains frozen, it forms a cap, effectively trapping the methane beneath. However, as the permafrost thaws, it develops holes, which allow the methane to escape. These releases can be larger and more abrupt than those that result from decomposition.

The findings are the latest in an ongoing international research project led by Shakhova and Igor Semiletov, both researchers at the UAF International Arctic Research Center. Their twice-yearly arctic expeditions have revealed that the subsea permafrost in the area has thawed much more extensively than previously thought, in part due to warming water near the bottom of the ocean. The warming has created conditions that allow the subsea methane to escape in much greater amounts than their earlier models estimated. Frequent storms in the area hasten its release into the atmosphere, much in the same way stirring a soda releases the carbonation more quickly.

"Results of this study represent a big step forward toward improving our understanding of methane emissions from the East Siberian Arctic Shelf," said Shakhova. She noted that while the ESAS is unusual in its expansive and shallow nature, the team's findings there speak to the need for further exploration of the subsea Arctic. "I believe that all other arctic shelf areas are significantly underestimated and should be paid very careful attention to."

The East Siberian Arctic Shelf is a methane-rich area that encompasses more than 2 million square kilometers of seafloor in the Arctic Ocean. It is more than three times as large as the nearby Siberian wetlands, which have been considered the primary Northern Hemisphere source of atmospheric methane. Previous estimates performed for the ESAS suggested that the area was releasing 8 teragrams of methane into the atmosphere yearly.

During field expeditions, the research team used a variety of techniques—including sonar and visual images of methane bubbles in the water, air and water sampling, seafloor drilling and temperature readings—to determine the conditions of the water and permafrost, as well as the amount of methane being released.

Methane is an important factor in global climate change, because it so effectively traps heat. As conditions warm, global research has indicated that more methane is released, which then stands to further warm the planet. Scientists call this phenomenon a positive feedback loop.

"We believe that the release of methane from the Arctic, and in particular this part of the Arctic, could impact the entire globe," Shakhova said. "We are trying to understand the actual contribution of the ESAS to the global methane budget and how that will change over time."



INFORMATION:

Shakhova and Semiletov are also affiliated with the Pacific Oceanological Institute at the Russian Academy of Sciences, Far Eastern Branch, as are research team members Anatoly Salyuk, Denis Kosmach and Denis Chernykh. Other members of the research team include Dmitry Nicolsky of the UAF Geophysical Institute; co-lead author Ira Leifer of the Marine Sciences Institute at the University of California, Santa Barbara and Bubbleology Research International; Valentin Sergienko of the Institute of Chemistry at the Russian Academy of Sciences, Far Eastern Branch; Chris Stubbs of the Marine Sciences Institute at the University of California, Santa Barbara; Vladimir Tumskoy of Moscow State University; and Örjan Gustafsson of the Department of Applied Environmental Science and Bolin Centre for Climate Research, Stockholm University.

NOTE TO EDITORS: Photos of methane bubbles in the sea and fieldwork are available for download at http://bit.ly/uaf112502



ELSE PRESS RELEASES FROM THIS DATE:

Risk of HIV treatment failure present even in those with low viral load

2013-11-26
Risk of HIV treatment failure present even in those with low viral load Study proposes new benchmarks for clinical treatment of HIV People with human immunodeficiency virus (HIV) run a higher risk of virologic failure than previously thought, even ...

MR spectroscopy shows differences in brains of preterm infants

2013-11-26
MR spectroscopy shows differences in brains of preterm infants CHICAGO – Premature birth appears to trigger developmental processes in the white matter of the brain that could put children at higher risk of problems later in life, according to a study ...

New tool developed for profiling critical regulatory structures of RNA molecules

2013-11-25
New tool developed for profiling critical regulatory structures of RNA molecules A molecular technique that will help the scientific community to analyze -- on a scale previously impossible -- molecules that play a critical role in regulating gene expression has been ...

Your first hug: How the early embryo changes shape

2013-11-25
Your first hug: How the early embryo changes shape In research published today in Nature Cell Biology, scientists from the EMBL Australia research team based at Monash University's Australian Regenerative Medicine Institute (ARMI) have revealed new ...

Pill-popping galaxy hooked on gas

2013-11-25
Pill-popping galaxy hooked on gas Our Galaxy may have been swallowing "pills" — clouds of gas with a magnetic wrapper — to keep making stars for the past eight billion years. That's the conclusion of CSIRO astronomer Dr Alex Hill, lead author of a study of the Smith Cloud, ...

Black hole jets pack a powerful punch

2013-11-25
Black hole jets pack a powerful punch High-speed 'jets' spat out by black holes pack a lot of power because they contain heavy atoms, astronomers have found. Black-hole jets recycle matter and energy into space and can affect when and where a galaxy forms stars. "Jets ...

The mushrooms, my friend, are blowing in the wind...

2013-11-25
The mushrooms, my friend, are blowing in the wind... Research at the APS Division of Fluid Dynamics Meeting in Pittsburgh shows how the mushroom spews its spores WASHINGTON D.C. Nov. 25, 2013 -- Plants use a variety of methods to spread their seeds, including ...

JCI early table of contents for Nov. 25, 2013

2013-11-25
JCI early table of contents for Nov. 25, 2013 Predicting nasopharyngeal carcinoma patient response to radiation therapy Nasopharyngeal carcinoma (NPC) affects cells lining the nasopharynx. The majority of NPC cases can be cured by radiation therapy, ...

Predicting nasopharyngeal carcinoma patient response to radiation therapy

2013-11-25
Predicting nasopharyngeal carcinoma patient response to radiation therapy Nasopharyngeal carcinoma (NPC) affects cells lining the nasopharynx. The majority of NPC cases can be cured by radiation therapy, however ~20% are resistant to radiation treatment. ...

Circadian clock proteins maintain neuronal cell function

2013-11-25
Circadian clock proteins maintain neuronal cell function The circadian clock synchronizes the molecular activity of cells to their environment. The "core clock" of the circadian system is made up of a group of proteins that autonomously activate and ...

LAST 30 PRESS RELEASES:

Artificial saliva containing sugarcane protein helps protect the teeth of patients with head and neck cancer

Understanding the role of linear ubiquitination in T-tubule biogenesis

Researchers identify urban atmosphere as primary reservoir of microplastics

World’s oldest arrow poison – 60,000-year-old traces reveal early advanced hunting techniques

Bristol scientists discover early sponges were soft

New study uncovers how rice viruses manipulate plant defenses to protect insect vectors

NSF–DOE Vera C. Rubin Observatory spots record-breaking asteroid in pre-survey observations

Ribosomal engineering creates “super-probiotic” bacteria

This self-powered eye tracker harnesses energy from blinking and is as comfortable as everyday glasses

Adverse prenatal exposures linked to higher rates of mental health issues, brain changes in adolescents

Restoring mitochondria shows promise for treating chronic nerve pain   

Nature study identifies a molecular switch that controls transitions between single-celled and multicellular forms

USU chemists' CRISPR discovery could lead to single diagnostic test for COVID, flu, RSV

Early hominins from Morocco reveal an African lineage near the root of Homo sapiens

Small chimps, big risks: What chimps show us about our own behavior

We finally know how the most common types of planets are created

Thirty-year risk of cardiovascular disease among healthy women according to clinical thresholds of lipoprotein(a)

Yoga for opioid withdrawal and autonomic regulation

Gene therapy ‘switch’ may offer non-addictive pain relief

Study shows your genes determine how fast your DNA mutates with age

Common brain parasite can infect your immune cells. Here's why that's probably OK

International experts connect infections and aging through cellular senescence

An AI–DFT integrated framework accelerates materials discovery and design

Twist to reshape, shift to transform: Bilayer structure enables multifunctional imaging

CUNY Graduate Center and its academic partners awarded more than $1M by Google.org to advance statewide AI education through the Empire AI consortium

Mount Sinai Health system receives $8.5 million NIH grant renewal to advance research on long-term outcomes in children with congenital heart disease

Researchers develop treatment for advanced prostate cancer that could eliminate severe side effects

Keck Medicine of USC names Christian Pass chief financial officer

Inflatable fabric robotic arm picks apples

MD Anderson and SOPHiA GENETICS announce strategic collaboration to accelerate AI-driven precision oncology

[Press-News.org] Study: Arctic seafloor methane releases double previous estimates
Storm activity hastens release of greenhouse gas into the atmosphere