(Press-News.org) Contact information: Jeff Sossamon
sossamonj@missouri.edu
573-882-3346
University of Missouri-Columbia
MU researchers develop advanced 3-dimensional 'force microscope'
Innovation could lead to faster drug therapies and increased understanding of proteins on the microscopic level
COLUMBIA, Mo. – Membrane proteins are the "gatekeepers" that allow information and molecules to pass into and out of a cell. Until recently, the microscopic study of these complex proteins has been restricted due to limitations of "force microscopes" that are available to researchers and the one-dimensional results these microscopes reveal. Now, researchers at the University of Missouri have developed a three-dimensional microscope that will yield unparalleled study of membrane proteins and how they interact on the cellular level. These microscopes could help pharmaceutical companies bring drugs to market faster.
"Force microscopes are very different from the microscopes we used in biology class," said Gavin King, assistant professor of physics and astronomy in the College of Arts & Science at MU, and joint assistant professor of biochemistry. "Instead of using optics, force microscopes incorporate a tiny needle that gets dragged across the surface of the slide or specimen, similar to how a blind person reads Braille or comparable to the needle of an old record player. However, the one-dimensional, traditional method of studying membrane proteins through a force microscope—while good—only yields limited results," King said.
Normally, force microscopes measure the compression of the needle against the specimen by bouncing a single laser off the cantilever, or arm, that holds the microscopic needle in place. As the cantilever moves, it deflects light that is sent back to a highly advanced computer. There, the results are interpreted, giving researchers an idea of how the membrane proteins are interacting with the cell.
VIDEO:
This video is available for broadcast quality download and re-use. For more information, contact Nathan Hurst: hurstn@missouri.edu.
Click here for more information.
Usually, to determine membrane protein structure in detail, specimens must be crystallized, or frozen; therefore, the specimen cannot be studied as it would behave in the primarily liquid environment found in the body.
King and his fellow researcher, Krishna Sigdel, a postdoctoral fellow in the Department of Physics, solved the problem by building their own force microscope that is able to study membrane proteins in conditions similar to those found in the body. Using a traditional one-dimensional force microscope as a guide, the team added an additional laser that measures the second and third dimensions of tip movement, giving researchers "real-time" access to the measurement of peaks and valleys in the membrane protein and dynamic changes in those structures.
"By adding a new laser that is focused from below, we essentially gave the force microscope two additional dimensions," King said. "Using this new laser, we collect the back-scattered light from not only the cantilever holding the needle, but also the tip of the needle that gives additional measurements. This added flexibility allows us to collect information faster and allows our microscope to work in near-native conditions in fluid like those found in the cell, yielding more realistic results."
King suggested that an advantage of three-dimensional force microscopy is that it allows for better interpretation of how a protein's dynamic shape also dictates its function. King said that by studying how the shape of proteins change, researchers can determine how drugs bind and interact with cells. Using membrane protein information, pharmaceutical companies can determine which molecules to pursue.
INFORMATION:
King's work, "Three-dimensional atomic force microscopy: interaction force vector by direct observation of tip trajectory," was published in NanoLetters, the journal of the American Chemical Society and was funded in part by the National Science Foundation and the Burroughs Wellcome Fund.
The publication was co-written by King, Sigdel and Justin Grayer, who is currently a graduate student in MU's Electrical and Computer Engineering Department.
King's joint appointment in the Department of Biochemistry, which is located in the School of Medicine and the College of Agriculture, Food, and Natural Resources, emphasizes the highly collaborative culture in the area of One Health/One Medicine—one of the four key areas of collaborative strength that distinguish MU collectively known as the Mizzou Advantage. The other three areas are Food for the Future, Sustainable Energy, and Media of the Future.
MU researchers develop advanced 3-dimensional 'force microscope'
Innovation could lead to faster drug therapies and increased understanding of proteins on the microscopic level
2013-12-18
ELSE PRESS RELEASES FROM THIS DATE:
Bonobos stay young longer
2013-12-18
Bonobos stay young longer
Contrary to humans and chimpanzees bonobos retain elevated thyroid hormones well into adulthood
This news release is available in German. Despite the fact that chimpanzees and bonobos share similar starting conditions ...
Exposing the roots of the lithium battery problem
2013-12-18
Exposing the roots of the lithium battery problem
Berkeley Lab researchers find dendrite problem starts below the surface
The lithium-ion batteries that power our laptops, smartphones and electric vehicles could have significantly higher energy density ...
NASA satellites get double coverage on newborn Tropical Cyclone Amara
2013-12-18
NASA satellites get double coverage on newborn Tropical Cyclone Amara
System 93S strengthened into the third tropical depression of the Southern Indian Ocean cyclone season, which quickly became a tropical storm named Amara. NASA's TRMM and Aqua satellites flew overhead ...
Study finds known lung cancer oncogenes ALK and ROS1 also drive colorectal cancer
2013-12-18
Study finds known lung cancer oncogenes ALK and ROS1 also drive colorectal cancer
Genetically targeted drugs in use for lung cancer may have colorectal cancer application, as well
A University of Colorado Cancer Center study published online ahead of print in the ...
Pfeiffer fire near Big Sur, Calif.
2013-12-18
Pfeiffer fire near Big Sur, Calif.
The MODIS or Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Aqua satellite captured an image of smoke and detected the heat from the Pfeiffer Fire near Big Sur, California on December 16 at ...
Significant advance reported with genetically modified poplar trees
2013-12-18
Significant advance reported with genetically modified poplar trees
CORVALLIS, Ore. – Forest geneticists at Oregon State University have created genetically modified poplar trees that grow faster, have resistance to insect pests and are able to retain ...
Saving Fiji's coral reefs linked to forest conservation upstream
2013-12-18
Saving Fiji's coral reefs linked to forest conservation upstream
The health of coral reefs offshore depend on the protection of forests near the sea, according to a new study by the Wildlife Conservation Society that outlines the importance of terrestrial ...
New research on diverticular disease in the December issue of Clinical Gastroenterology and Hepatology
2013-12-18
New research on diverticular disease in the December issue of Clinical Gastroenterology and Hepatology
Diverticulosis, a condition that develops when pouches form in the wall of the colon, is increasing in frequency. It affects the majority of ...
Water in cells behaves in complex and intricate ways
2013-12-18
Water in cells behaves in complex and intricate ways
ANN ARBOR—In a sort of biological "spooky action at a distance," water in a cell slows down in the tightest confines between proteins and develops the ability to affect other proteins much farther away, University ...
Silencing synapses
2013-12-18
Silencing synapses
Hope for a pharmacological solution to cocaine addiction
PITTSBURGH—Imagine kicking a cocaine addiction by simply popping a pill that alters the way your brain processes chemical addiction. New research from the University of Pittsburgh suggests ...
LAST 30 PRESS RELEASES:
Tumor electrophysiology in precision tumor therapy
AI revolution in medicine: how large language models are transforming drug development
Hidden contamination in DNA extraction kits threatens accuracy of global zoonotic surveillance
Slicing and dictionaries: a new approach to medical big data
60 percent of the world’s land area is in a precarious state
Thousands of kids in mental health crisis are stuck for days in hospital emergency rooms, study finds
Prices and affordability of essential medicines in 72 low-, middle-, and high-income markets
Space mice babies
FastUKB: A revolutionary tool for simplifying UK Biobank data analysis
Mount Sinai returns as official hospital and medical services provider of the US Open Tennis Championships
NIH grant funds effort to target the root of HIV persistence
Intrinsic HOTI-type topological hinge states in photonic metamaterials
Breakthrough lung cancer therapy targets tumors with precision nanobody
How AI could speed the development of RNA vaccines and other RNA therapies
Scientists reveal how senses work together in the brain
Antarctica’s changing threat landscape underscores the need for coordinated action
Intergalactic experiment: Researchers hunt for mysterious dark matter particle with clever new trick
Using bacteria to sneak viruses into tumors
Large community heart health checks can identify risk for heart disease
Past Arctic climate secrets to be revealed during i2B “Into The Blue” Arctic Ocean Expedition 2025
Teaching the immune system a new trick could one day level the organ transplant playing field
Can green technologies resolve the “dilemma” in wheat production?
Green high-yield and high-efficiency technology: a new path balancing yield and ecology
How can science and technology solve the problem of increasing grain yield per unit area?
New CRISPR technique could rewrite future of genetic disease treatment
he new tech that could improve care for Parkinson's patients
Sharing is power: do the neighbourly thing when it comes to solar
Sparring saigas win 2025 BMC journals Image Competition
Researchers discover dementia-like behaviour in pre-cancer cells
Medical pros of electroconvulsive therapy (ECT) exaggerated while cons downplayed, survey findings suggest
[Press-News.org] MU researchers develop advanced 3-dimensional 'force microscope'Innovation could lead to faster drug therapies and increased understanding of proteins on the microscopic level