PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Innovative screening strategy swiftly uncovers new drug candidates, new biology

Scripps Research Institute scientists use method to identify compound with promise for obesity-linked diabetes

2013-12-27
(Press-News.org) Contact information: Mika Ono
mikaono@scripps.edu
858-784-2052
Scripps Research Institute
Innovative screening strategy swiftly uncovers new drug candidates, new biology Scripps Research Institute scientists use method to identify compound with promise for obesity-linked diabetes

LA JOLLA, CA—December 22, 2013—Scientists at The Scripps Research Institute (TSRI) have demonstrated a drug-discovery strategy with a double payoff—it enables the rapid selection of chemical compounds that have a desired effect on cells and also highlights how the compounds work.

To illustrate the power of the innovative technique, the TSRI researchers used it to identify a compound that shows promise for treating obesity-linked diabetes. At the same time, they were able to identify the fat-cell enzyme that the compound inhibits—an enzyme that has not yet been a focus of diabetes drug development.

"This integrated strategy we've developed has the potential to accelerate the discovery of important biological pathways and may lead to faster development of new drugs for multiple diseases," said TSRI Associate Professor Enrique Saez.

Saez and his colleague Benjamin F. Cravatt, chair of TSRI's Department of Chemical Physiology, were the senior authors of the new study, which is reported December 22, 2013, in an advance online issue of Nature Chemical Biology.

Facilitating Drug Discovery

The new strategy has great potential to streamline drug discovery, a process whose importance to human health can hardly be overemphasized.

Typically, pharmaceutical scientists start the discovery process by "screening" large libraries of chemical compounds in search of one or a few that might treat disease. The dominant strategy of recent decades has been to screen compounds for a specific activity against a known target, for example, inhibiting the function of a certain enzyme thought to be critical for the disease in question. A key advantage of this "target-based" screening is that it uses biochemical tests that can be done relatively simply in a test-tube—or rather, in a large array of tiny test tubes via automated, rapid screening systems that sort through hundreds of thousands of different compounds.

Target-based screening has enabled scientists to discover many useful new drugs, but some wonder whether this basic discovery strategy has already taken all the "low hanging fruit." In recent years, compounds selected with target-based in vitro tests have seemed to be failing increasingly often when tested in the more realistic biological environments of cells and animals.

An older strategy, "phenotypic" screening, avoids much of this problem by testing compounds for their ability to produce a desired effect directly on living cells. Unfortunately, such cell-based tests often leave open the question of how a useful compound works. "If you don't know what its relevant molecular target is, then developing that compound into a drug—optimizing its potency, its selectivity, its half-life in the bloodstream and so on—is going to be difficult," said Saez.

Identifying the molecular targets of compounds selected by phenotypic screens is typically burdensome and time-consuming. But in their new study, Saez, Cravatt and their colleagues were able to speed up the process dramatically. Indeed, their combined phenotypic screening and target-identification approach enabled them to quickly discover, characterize and carry out preclinical tests of a potential new drug for obesity-linked diabetes: a complex metabolic disorder that affects 347 million people worldwide.

A New Diabetes Drug Candidate, Plus Insights into the Disease

The strategy makes use of the increasing availability of special libraries of related compounds that act as inhibitors of entire enzyme classes. In this case, the researchers used a set of compounds, recently synthesized by Cravatt's laboratory, that tend to inhibit serine hydrolases—a vast enzyme family whose members participate in most biological processes in mammals.

The scientists started with a phenotypic screen, testing their library of compounds for the ability to make young fat cells mature faster and store more fat. Better fat storage means that less fat leaks from fat cells into the liver, muscles and pancreas—a process that frequently occurs with obesity, often interfering with insulin signaling enough to bring on diabetes.

The screen quickly yielded several compounds that had a strong effect in promoting fat-cell fat storage. The researchers then used a method called "activity-based profiling" to identify the fat-cell serine hydrolases that the compounds inhibited most strongly. One of the most potent compounds, WWL113, turned out to work principally by inhibiting Ces3, a serine hydrolase enzyme that scientists have not studied in the context of obesity or diabetes.

The researchers quickly demonstrated WWL113's effectiveness in two different mouse models of obesity-linked diabetes—one in which the mice are genetically programmed to become obese and diabetic, and another in which normal mice are made obese and diabetic with a high-fat diet. "The treated animals showed resistance to weight gain—they were not putting on as much weight as the controls," said Saez. "Their blood biochemistry also was getting normalized; their glucose, triglyceride and cholesterol levels were coming down towards normal levels."

In these mouse tests, WWL113—without any optimization for use as a drug—performed about as well as the FDA-approved diabetes treatment rosiglitazone (Avandia). Notably, the new compound lacked one of the side effects that drugs in rosiglitazone's class have in mice: the toxic accumulation of lipids in the liver.

"Our compound clears lipids from the diabetic mouse liver, whereas rosiglitazone has the opposite effect," said Saez.

To explore the relevance of these results to humans, the TSRI team worked with collaborating researchers in Australia to test fat samples from obese humans and diabetics. The tests confirmed that the human version of Ces3 also is unusually active in such patients. This suggests that an inhibitor may also work as a diabetes treatment in people.

Saez and his colleagues will next focus on using the new screening strategy to uncover more biological pathways that could yield new mechanisms to develop potential therapies.



INFORMATION:

Contributors to the study, "Integrated phenotypic and activity-based profiling links Ces3 to obesity and diabetes," also included first author Eduardo Dominguez, then a postdoctoral fellow in the Saez Laboratory; as well as TSRI's Andrea Galmozzi, Jae Won Chang, Ku-Lung Hsu, Joanna Pawlak, Weiwei Li, Cristina Godio, Jason Thomas, David Partida, Sherry Niessen and Daniel K. Nomura; and Australian researchers Paul E. O'Brien and Matthew J. Watt of Monash University, and Aaron P. Russell of Deakin University.

The study was funded in part by the National Institutes for Health (DK081003, DK099810), the American Diabetes Association, The McDonald's Center for Type 2 Diabetes and Obesity, the National Health and Medical Research Council of Australia, the Hewitt Foundation for Medical Research and the Xunta de Galicia, Spain.



ELSE PRESS RELEASES FROM THIS DATE:

'Be different or die' does not drive evolution

2013-12-27
'Be different or die' does not drive evolution A new study has found that species living together are not forced to evolve differently to avoid competing with each other, challenging a theory that has held since Darwin's Origin of Species. By ...

Greenland ice stores liquid water year-round

2013-12-27
Greenland ice stores liquid water year-round Potential for storing meltwater important for calculating sea-level rise Dec. 22, 2013 – Researchers at the University of Utah have discovered a new aquifer in the Greenland Ice Sheet that holds liquid water all ...

Researchers create largest evolutionary 'timetree' of land plants to investigate traits that permit survival in cold climates

2013-12-27
Researchers create largest evolutionary 'timetree' of land plants to investigate traits that permit survival in cold climates A team of researchers studying plants has assembled the largest dated evolutionary tree, using it to show the order in which flowering plants ...

Solar activity not a key cause of climate change, study shows

2013-12-27
Solar activity not a key cause of climate change, study shows Climate change has not been strongly influenced by variations in heat from the sun, a new scientific study shows Climate change has not been strongly influenced by variations in heat from the ...

York scientists' significant step forward in biofuels quest

2013-12-27
York scientists' significant step forward in biofuels quest Scientists at the University of York have made a significant step in the search to develop effective second generation biofuels. Researchers from the Department of Chemistry at York have discovered ...

Scientists anticipated size and location of 2012 Costa Rica earthquake

2013-12-27
Scientists anticipated size and location of 2012 Costa Rica earthquake Scientists using GPS to study changes in the Earth's shape accurately forecasted the size and location of the magnitude 7.6 Nicoya earthquake that occurred in 2012 in Costa Rica. The Nicoya ...

The analogue of a tsunami for telecommunication

2013-12-27
The analogue of a tsunami for telecommunication Development of electronics and communication requires a hardware base capable for increasingly larger precision, ergonomics and throughput. For communication and GPS-navigation satellites, it is of great importance ...

Study: Some plants may not adapt quickly to future climate change

2013-12-27
Study: Some plants may not adapt quickly to future climate change GAINESVILLE, Fla. --- Using the largest dated evolutionary tree of flowering plants ever assembled, a new study suggests how plants developed traits to withstand low temperatures, with implications ...

Solitons in a crystal

2013-12-27
Solitons in a crystal Soliton water waves can travel several kilometers without any significant change in their shape or amplitude, as opposed to normal waves, which widen as they travel, and eventually disappear. Discovered over 150 years ...

Annals of Internal Medicine tip sheet for Dec. 24, 2013

2013-12-27
Annals of Internal Medicine tip sheet for Dec. 24, 2013 Embargoed news from Annals of Internal Medicine 1. Unprecedented but Justified. Princeton meningitis outbreak calls for "compassionate use" of unlicenced vaccine In the wake of Princeton University's ...

LAST 30 PRESS RELEASES:

Study finds link between colorblindness and death from bladder cancer

Tailored treatment approach shows promise for reducing suicide and self-harm risk in teens and young adults

Call for papers: AI in biochar research for sustainable land ecosystems

Methane eating microbes turn a powerful greenhouse gas into green plastics, feed, and fuel

Hidden nitrogen in China’s rice paddies could cut fertilizer use

Texas A&M researchers expose hidden risks of firefighter gear in an effort to improve safety and performance

Wood burning in homes drives dangerous air pollution in winter

The Journal of Nuclear Medicine Ahead-of-Print Tip Sheet: January 23, 2026

ISSCR statement in response to new NIH policy on research using human fetal tissue (Notice NOT-OD-26-028)

Biologists and engineers follow goopy clues to plant-wilting bacteria

What do rats remember? IU research pushes the boundaries on what animal models can tell us about human memory

Frontiers Science House: did you miss it? Fresh stories from Davos – end of week wrap

Watching forests grow from space

New grounded theory reveals why hybrid delivery systems work the way they do

CDI scientist joins NIH group to improve post-stem cell transplant patient evaluation

Uncovering cancer's hidden oncRNA signatures: From discovery to liquid biopsy

Multiple maternal chronic conditions and risk of severe neonatal morbidity and mortality

Interactive virtual assistant for health promotion among older adults with type 2 diabetes

Ion accumulation in liquid–liquid phase separation regulates biomolecule localization

Hemispheric asymmetry in the genetic overlap between schizophrenia and white matter microstructure

Research Article | Evaluation of ten satellite-based and reanalysis precipitation datasets on a daily basis for Czechia (2001–2021)

Nano-immunotherapy synergizing ferroptosis and STING activation in metastatic bladder cancer

Insilico Medicine receives IND approval from FDA for ISM8969, an AI-empowered potential best-in-class NLRP3 inhibitor

Combined aerobic-resistance exercise: Dual efficacy and efficiency for hepatic steatosis

Expert consensus outlines a standardized framework to evaluate clinical large language models

Bioengineered tissue as a revolutionary treatment for secondary lymphedema

Forty years of tracking trees reveals how global change is impacting Amazon and Andean Forest diversity

Breathing disruptions during sleep widespread in newborns with severe spina bifida

Whales may divide resources to co-exist under pressures from climate change

Why wetland restoration needs citizens on the ground

[Press-News.org] Innovative screening strategy swiftly uncovers new drug candidates, new biology
Scripps Research Institute scientists use method to identify compound with promise for obesity-linked diabetes